采用 opencv surf 算子进行特征匹配
生活随笔
收集整理的這篇文章主要介紹了
采用 opencv surf 算子进行特征匹配
小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.
opencv docu
源碼在git
目錄結(jié)構(gòu)
. ├── build ├── CMakeLists.txt ├── main.cpp ├── t1.jpg └── t2.jpg /** @file SURF_FlannMatcher* @brief SURF detector + descriptor + FLANN Matcher* @author A. Huaman*/ #include <stdio.h> #include <iostream> #include <stdio.h> #include <iostream> #include "opencv2/core.hpp" #include "opencv2/features2d.hpp" #include "opencv2/imgcodecs.hpp" #include "opencv2/highgui.hpp" #include "opencv2/xfeatures2d.hpp" using namespace std; using namespace cv; using namespace cv::xfeatures2d; void readme(); /** @function main* @brief Main function*/ int main( int argc, char** argv ) {if( argc != 3 ){ readme(); return -1; }Mat img_1 = imread( argv[1], IMREAD_GRAYSCALE );Mat img_2 = imread( argv[2], IMREAD_GRAYSCALE );if( !img_1.data || !img_2.data ){ std::cout<< " --(!) Error reading images " << std::endl; return -1; }//-- Step 1: Detect the keypoints using SURF Detector, compute the descriptorsint minHessian = 400;Ptr<SURF> detector = SURF::create();detector->setHessianThreshold(minHessian);std::vector<KeyPoint> keypoints_1, keypoints_2;Mat descriptors_1, descriptors_2;detector->detectAndCompute( img_1, Mat(), keypoints_1, descriptors_1 );detector->detectAndCompute( img_2, Mat(), keypoints_2, descriptors_2 );//-- Step 2: Matching descriptor vectors using FLANN matcherFlannBasedMatcher matcher;std::vector< DMatch > matches;matcher.match( descriptors_1, descriptors_2, matches );double max_dist = 0; double min_dist = 100;//-- Quick calculation of max and min distances between keypointsfor( int i = 0; i < descriptors_1.rows; i++ ){ double dist = matches[i].distance;if( dist < min_dist ) min_dist = dist;if( dist > max_dist ) max_dist = dist;}printf("-- Max dist : %f \n", max_dist );printf("-- Min dist : %f \n", min_dist );//-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist,//-- or a small arbitrary value ( 0.02 ) in the event that min_dist is very//-- small)//-- PS.- radiusMatch can also be used here.std::vector< DMatch > good_matches;for( int i = 0; i < descriptors_1.rows; i++ ){ if( matches[i].distance <= max(2*min_dist, 0.02) ){ good_matches.push_back( matches[i]); }}//-- Draw only "good" matchesMat img_matches;drawMatches( img_1, keypoints_1, img_2, keypoints_2,good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );//-- Show detected matchesimshow( "Good Matches", img_matches );for( int i = 0; i < (int)good_matches.size(); i++ ){ printf( "-- Good Match [%d] Keypoint 1: %d -- Keypoint 2: %d \n", i, good_matches[i].queryIdx, good_matches[i].trainIdx ); }waitKey(0);return 0; } /** @function readme*/ void readme() { std::cout << " Usage: ./SURF_FlannMatcher <img1> <img2>" << std::endl; } cd buildcmake ../make ./DisplayImage ../t1.jpg ../t2.jpg總結(jié)
以上是生活随笔為你收集整理的采用 opencv surf 算子进行特征匹配的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: opencv 的特征提取算子SIFT/O
- 下一篇: python 中值滤波