keras cnn 代码详解
生活随笔
收集整理的這篇文章主要介紹了
keras cnn 代码详解
小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Sep 30 18:00:30 2018
這是用keras搭建的簡(jiǎn)單的cnn 網(wǎng)絡(luò)
@author: lg
"""
##import keras
from keras.datasets import cifar10
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2Dfrom matplotlib import pyplot as pltnum_classes = 10
model_name = 'cifar10.h5'# The data, shuffled and split between train and test sets:
(x_train, y_train), (x_test, y_test) = cifar10.load_data()plt.imshow(x_train[0])
plt.show()x_train = x_train.astype('float32')/255
x_test = x_test.astype('float32')/255# Convert class vectors to binary class matrices.
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)model = Sequential()#第一個(gè) 卷積層 的卷積核的數(shù)目是32 ,卷積核的大小是3*3,stride沒(méi)寫(xiě),默認(rèn)應(yīng)該是1*1
#對(duì)于stride=1*1,并且padding ='same',這種情況卷積后的圖像shape與卷積前相同,本層后shape還是32*32
model.add(Conv2D(32, (3, 3), padding='same',strides=(1,1) ,input_shape=x_train.shape[1:]))
model.add(Activation('relu'))#keras Pool層有個(gè)奇怪的地方,stride,默認(rèn)是(2*2),padding 默認(rèn)是valid,在寫(xiě)代碼是這些參數(shù)還是最好都加上
model.add( MaxPooling2D(pool_size=(2, 2),strides=(2,2),padding='same') )model.add(Dropout(0.25))model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))model.add(Flatten())model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))model.add(Dense(num_classes))
model.add(Activation('softmax'))model.summary()# initiate RMSprop optimizer
opt = keras.optimizers.rmsprop(lr=0.001, decay=1e-6)# train the model using RMSprop
model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])hist = model.fit(x_train, y_train, epochs=40, shuffle=True)
model.save(model_name)# evaluate
loss, accuracy = model.evaluate(x_test, y_test)
print (loss, accuracy)
總結(jié)
以上是生活随笔為你收集整理的keras cnn 代码详解的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: tensorflow max_pooli
- 下一篇: 神经网络正则化