线性回归和岭回归
? 我近半年每個月所寫博客的數量
# -*- coding: utf-8 -*- """ Created on Fri Sep 1 18:23:07 2017@author: Administrator """ from sklearn import linear_model import numpy as np import matplotlib.pyplot as plt y=np.array([13,12,32,0,1,7,27]).reshape(-1,1) x=np.array([2,3,4,5,6,7,8]).reshape(-1,1)plt.plot(x,y)plt.rcParams['font.sans-serif'] = ['SimHei'] #用來正常顯示中文標簽 plt.rcParams['axes.unicode_minus'] = False #用來正常顯示負號##設置模型 model = linear_model.LinearRegression() ##訓練數據 model.fit(x, y) ##用訓練得出的模型預測數據 y_plot = model.predict(x) ##打印線性方程的權重 print(model.coef_) ## 0.90045842、plt.scatter(x, y, color='red',label="樣本數據",linewidth=2) plt.plot(x, y_plot, color='green',label="擬合直線",linewidth=2) plt.legend(loc='lower right') plt.show()from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import make_pipeline import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import Ridge##這里指定使用嶺回歸作為基函數 model = make_pipeline(PolynomialFeatures(15), Ridge()) model.fit(x, y) ##根據模型預測結果 y_plot = model.predict(x)##繪圖 plt.scatter(x, y, color='red',label="樣本數據",linewidth=2) plt.plot(x, y_plot, color='green',label="擬合直線",linewidth=2) plt.legend(loc='lower right') plt.show()原文鏈接
總結
- 上一篇: Python与风水 的‘’南北通透‘’住
- 下一篇: python 与机器学习实战(何宇健)代