k-means 算法
生活随笔
收集整理的這篇文章主要介紹了
k-means 算法
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
from numpy import concatenate,column_stack,row_stack
import numpy as np
import matplotlib.pyplot as plt
#%matplotlib inline
from sklearn.datasets.samples_generator import make_blobs
# X為樣本特征,Y為樣本簇類別, 共1000個樣本,每個樣本4個特征,共4個簇,簇中心在[-1,-1], [0,0],[1,1], [2,2], 簇方差分別為[0.4, 0.2, 0.2]
X, y = make_blobs(n_samples=1000, centers=[[-1,-1], [0,0], [1,1]] ,cluster_std=[0.4, 0.2, 0.2], random_state =9)
plt.scatter(X[:, 0], X[:, 1], marker='o')
plt.show()from sklearn.cluster import KMeans
y_pred = KMeans(n_clusters=3, random_state=9).fit_predict(X)
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()from sklearn import metrics
print(metrics.calinski_harabaz_score(X, y_pred)) yy=np.array([y_pred])un=np.hstack((X,yy.T))print(un)print('\n')
A_1=['0','0','0']
A_2=['1','1','1']
A_3=['2','2','2']
for i in range(yy.shape[1]):if un[i][2]==0:A_1=row_stack((A_1,un[i])) elif un[i][2]==1:A_2=row_stack((A_2,un[i])) elif un[i][2]==2:A_3=row_stack((A_3,un[i])) print(A_1,'\n','A_1 have ',A_1.shape[0],'element') print(A_2,'\n','A_2 have ',A_2.shape[0],'element') print(A_3,'\n','A_3 have ',A_3.shape[0],'element')
總結
以上是生活随笔為你收集整理的k-means 算法的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 递归神经网络预测股票好文章
- 下一篇: sklearn.naive_bayes