python 二分法实现pow_Python实现二分法和黄金分割法
運(yùn)籌學(xué)課上,首先介紹了非線性規(guī)劃算法中的無(wú)約束規(guī)劃算法。二分法和黃金分割法是屬于無(wú)約束規(guī)劃算法的一維搜索法中的代表。
二分法:$$x_{1}^{(k+1)}=\frac{1}{2}(x_{R}^{(k)}+x_{L}^{(k)}-\Delta)$$$$x_{2}^{(k+1)}=\frac{1}{2}(x_{R}^{(k)}+x_{L}^{(k)}+\Delta)$$
黃金分割法:$$x_{1}^{(k+1)}=x_{R}^{(k)}-(\frac{\sqrt{5}-1}{2})(x_{R}^{(k)}-x_{L}^{(k)})$$$$x_{2}^{(k+1)}=x_{L}^{(k)}+(\frac{\sqrt{5}-1}{2})(x_{R}^{(k)}-x_{L}^{(k)})$$
選擇的$x_{1}^{(k+1)}$和$x_{2}^{(k+1)}$一定滿足$$x_{L}^{(k)}
下面確定新的不確定空間$I^{(k+1)}$
情況1:若$f(x_{1}^{(k+1)})>f(x_{2}^{(k+1)})$,則$I^{(k+1)}=\left[x_{L}^{(k)},x_{2}^{(k+1)}\right]$
情況2:若$f(x_{1}^{(k+1)})
情況3:若$f(x_{1}^{(k+1)})=f(x_{2}^{(k+1)})$,則$I^{(k+1)}=\left[x_{1}^{(k+1)},x_{2}^{(k+1)}\right]$
下面記錄下用Python實(shí)現(xiàn)二分法和黃金分割法的代碼。
二分法:
1 importmath2 importnumpy as np3
4
5 def anyfunction(x): #在這里我們定義任意一個(gè)指定初始區(qū)間內(nèi)的單峰函數(shù),以x*cos(x)為例
6 return x*math.cos(x)7
8
9 Low = float(input("Please enter the lowbound:"))10 High = float(input("Please enter the highbound:"))11 High = np.pi #在這里我們?nèi)〕跏忌辖鐬棣?如果可以輸入則注釋掉這一行
12 echos = int(input("Please enter the echos:")) #迭代次數(shù)
13 small = float(input("Please enter the smallvalue:")) #公式中的Delta
14
15 for i in range(1, echos + 1):16 Lowvalue = anyfunction(0.5*(Low + High -small))17 Highvalue = anyfunction(0.5*(Low + High +small))18 print("echos:" +str(i))19 print(‘before‘ + "Lowbound:" + str(0.5*(Low + High - small)) + "Highbound:" + str(0.5*(Low + High +small)))20 print(‘Lowvalue:‘ + str(Lowvalue) + ‘ ‘ + ‘Highvalue:‘ +str(Highvalue))21 if(Lowvalue ==Highvalue):22 Low = 0.5*(Low + High -small)23 High = 0.5*(Low + High +small)24 elif(Lowvalue
輸出結(jié)果如下:
5次循環(huán)后極值點(diǎn)被限制在[0.7828981633974482,0.8907604338221292]內(nèi)。
黃金分割法:
1 from math importsqrt, cos2 importnumpy as np3
4
5 def anyfunction(x): #同上以函數(shù)x*cos(x)為例
6 return x*cos(x)7
8
9 Low = float(input("Please enter the lowbound:"))10 High = float(input("Please enter the highbound:"))11 High = np.pi #同上,使用時(shí)應(yīng)該注釋掉
12 echos = int(input("Please enter the echos:"))13
14 #初始化,第一次運(yùn)算不存在運(yùn)算簡(jiǎn)化
15 uniquevalue = ((sqrt(5)-1)/2)*(High-Low)16 value1 = anyfunction(High -uniquevalue)17 value2 = anyfunction(Low +uniquevalue)18
19 for i in range(1, echos + 1):20 print("echos:" +str(i))21 print(‘before‘ + "Lowbound:" + str(High - uniquevalue) + "Highbound:" + str(Low +uniquevalue))22 print(‘value1:‘ + str(value1) + ‘ ‘ + ‘value2:‘ +str(value2))23 #利用黃金分割法的性質(zhì)減少一半的運(yùn)算量
24 if(value1 ==value2):25 Low = High -uniquevalue26 High = Low +uniquevalue27 uniquevalue = ((sqrt(5)-1)/2)*(High-Low)28 value1 = anyfunction(High -uniquevalue)29 value2 = anyfunction(Low +uniquevalue)30 elif(value1
輸出結(jié)果如下:
5次循環(huán)后極值點(diǎn)被限制在[0.7416294238611398,1.0249066567190932]
原文:https://www.cnblogs.com/chester-cs/p/11751508.html
總結(jié)
以上是生活随笔為你收集整理的python 二分法实现pow_Python实现二分法和黄金分割法的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: 的路由放在本地_支持双频+WiFi 6,
- 下一篇: syslinux引导扇区不支持ntfs文