python 笔记 size-constrained-clustering (对类别大小做限制的聚类问题)
生活随笔
收集整理的這篇文章主要介紹了
python 笔记 size-constrained-clustering (对类别大小做限制的聚类问题)
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
大小限制的聚類問題
1 主要方法
# 導入庫 from size_constrained_clustering import fcm, equal, minmax, shrinkage,da # by default it is euclidean distance, but can select others from sklearn.metrics.pairwise import haversine_distances from sklearn.datasets import make_blobs import numpy as np import matplotlib.pyplot as plt1.1 Fuzzy C-means Algorithm
和KMeans類似,不過利用了歸屬概率(membership probability)進行計算,而不是直接的0或者1
n_samples = 2000 n_clusters = 4 centers = [(-5, -5), (0, 0), (5, 5), (7, 10)] X, _ = make_blobs(n_samples=n_samples, n_features=2, cluster_std=1.0,centers=centers, shuffle=False, random_state=42) #生成數據集,每個主句兩個特征值,一共2000個樣本,四個分類,同時設定了聚類中心點的位置model = fcm.FCM(n_clusters)# use other distance function: e.g. haversine distance # model = fcm.FCM(n_clusters, distance_func=haversine_distances)model.fit(X)centers = model.cluster_centers_ ''' array([[ 0.06913083, 0.07352352],[-5.01038079, -4.98275774],[ 6.99974221, 10.01169349],[ 4.98686053, 5.0026792 ]]) 模型擬合之后,樣本聚類的中心點 '''labels = model.labels_ #模型擬合后,每個樣本的類別 plt.figure(figsize=(10,10))colors=['red','green','blue','yellow']for i,color in enumerate(colors):color_tmp=np.where(labels==i)[0]plt.scatter(X[color_tmp,0],X[color_tmp,1],c=color,label=i)plt.legend() plt.scatter(centers[:,0],centers[:,1],s=1000,c='black')1. 2 Same Size Contrained KMeans Heuristics
利用啟發式的方法獲取等大聚類結果
n_samples = 2000 n_clusters = 4 X = np.random.rand(n_samples, 2) # use minimum cost flow framework to solve model = equal.SameSizeKMeansHeuristics(n_clusters)model.fit(X) centers = model.cluster_centers_ labels = model.labels_ import matplotlib.pyplot as plt plt.figure(figsize=(10,10)) colors=['red','green','blue','yellow'] for i,color in enumerate(colors):color_tmp=np.where(labels==i)[0]plt.scatter(X[color_tmp,0],X[color_tmp,1],c=color,label=i) plt.legend() plt.scatter(centers[:,0],centers[:,1],s=1000,c='black')1.3 Same Size Contrained KMeans Inspired by Minimum Cost Flow Problem:
將聚類轉換為分配問題,并用最小費用流的思路進行求解
n_samples = 2000 n_clusters = 4 X = np.random.rand(n_samples, 2) # use minimum cost flow framework to solve model = equal.SameSizeKMeansMinCostFlow(n_clusters)model.fit(X) centers = model.cluster_centers_ labels = model.labels_ plt.figure(figsize=(10,10)) colors=['red','green','blue','yellow']for i,color in enumerate(colors):color_tmp=np.where(labels==i)[0]plt.scatter(X[color_tmp,0],X[color_tmp,1],c=color,label=i)plt.legend() plt.scatter(centers[:,0],centers[:,1],s=1000,c='black')1.4 Minimum and Maximum Size Constrained KMeans Inspired by Minimum Cost Flow Problem
將聚類轉換為分配問題,并用最小費用流的思路進行求解,加入最小和最大聚類規模限制
n_samples = 2000 n_clusters = 4 X = np.random.rand(n_samples, 2) # use minimum cost flow framework to solvemodel = minmax.MinMaxKMeansMinCostFlow(n_clusters, size_min=200, size_max=800)model.fit(X) centers = model.cluster_centers_ labels = model.labels_plt.figure(figsize=(10,10)) colors=['red','green','blue','yellow'] for i,color in enumerate(colors):color_tmp=np.where(labels==i)[0]plt.scatter(X[color_tmp,0],X[color_tmp,1],c=color,label=i) plt.legend() plt.scatter(centers[:,0],centers[:,1],s=1000,c='black')1.5 Deterministic Annealling Algorithm:
輸入目標每類規模比例,獲得相應聚類規模的結果。
n_samples = 2000 n_clusters = 4 X = np.random.rand(n_samples, 2) # use minimum cost flow framework to solve model = da.DeterministicAnnealing(n_clusters, distribution=[0.1, 0.2,0.4, 0.3])model.fit(X) centers = model.cluster_centers_ labels = model.labels_plt.figure(figsize=(10,10)) colors=['red','green','blue','yellow'] for i,color in enumerate(colors):color_tmp=np.where(labels==i)[0]plt.scatter(X[color_tmp,0],X[color_tmp,1],c=color,label=i) plt.legend() plt.scatter(centers[:,0],centers[:,1],s=1000,c='black')總結
以上是生活随笔為你收集整理的python 笔记 size-constrained-clustering (对类别大小做限制的聚类问题)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: R 笔记 prophet
- 下一篇: sklearn 笔记:make_blob