FaceNet--Google的人脸识别
引入
隨著深度學習的出現,CV領域突破很多,甚至掀起了一股CV界的創業浪潮,當次風口浪尖之時,Google豈能缺席。特貢獻出FaceNet再次刷新LFW上人臉驗證的效果記錄。
本文是閱讀FaceNet論文的筆記,所有配圖均來自于論文。
轉載請注明:http://blog.csdn.net/stdcoutzyx/article/details/46687471
FaceNet
與其他的深度學習方法在人臉上的應用不同,FaceNet并沒有用傳統的softmax的方式去進行分類學習,然后抽取其中某一層作為特征,而是直接進行端對端學習一個從圖像到歐式空間的編碼方法,然后基于這個編碼再做人臉識別、人臉驗證和人臉聚類等。
FaceNet算法有如下要點:
- 去掉了最后的softmax,而是用元組計算距離的方式來進行模型的訓練。使用這種方式學到的圖像表示非常緊致,使用128位足矣。
- 元組的選擇非常重要,選的好可以很快的收斂。
先看具體細節。
網絡架構
大體架構與普通的卷積神經網絡十分相似:
如圖所示:Deep Architecture就是卷積神經網絡去掉sofmax后的結構,經過L2的歸一化,然后得到特征表示,基于這個特征表示計算三元組損失。
目標函數
在看FaceNet的目標函數前,其實要想一想DeepID2和DeepID2+算法,他們都添加了驗證信號,但是是以加權的形式和softmax目標函數混合在一起。Google做的更多,直接替換了softmax。
所謂的三元組就是三個樣例,如(anchor, pos, neg),其中,x和p是同一類,x和n是不同類。那么學習的過程就是學到一種表示,對于盡可能多的三元組,使得anchor和pos的距離,小于anchor和neg的距離。即:
所以,變換一下,得到目標函數:
目標函數的含義就是對于不滿足條件的三元組,進行優化;對于滿足條件的三元組,就pass先不管。
三元組的選擇
很少的數據就可以產生很多的三元組,如果三元組選的不得法,那么模型要很久很久才能收斂。因而,三元組的選擇特別重要。
當然最暴力的方法就是對于每個樣本,從所有樣本中找出離他最近的反例和離它最遠的正例,然后進行優化。這種方法有兩個弊端:
- 耗時,基本上選三元組要比訓練還要耗時了,且等著吧。
- 容易受不好的數據的主導,導致得到的模型會很差。
所以,為了解決上述問題,論文中提出了兩種策略。
- 每N步線下在數據的子集上生成一些triplet
- 在線生成triplet,在每一個mini-batch中選擇hard pos/neg 樣例。
為了使mini-batch中生成的triplet合理,生成mini-batch的時候,保證每個mini-batch中每個人平均有40張圖片。然后隨機加一些反例進去。在生成triplet的時候,找出所有的anchor-pos對,然后對每個anchor-pos對找出其hard neg樣本。這里,并不是嚴格的去找hard的anchor-pos對,找出所有的anchor-pos對訓練的收斂速度也很快。
除了上述策略外,還可能會選擇一些semi-hard的樣例,所謂的semi-hard即不考慮alpha因素,即:
網絡模型
論文使用了兩種卷積模型:
- 第一種是Zeiler&Fergus架構,22層,140M參數,1.6billion FLOPS(FLOPS是什么?)。稱之為NN1。
- 第二種是GoogleNet式的Inception模型。模型參數是第一個的20分之一,FLOPS是第一個的五分之一。
- 基于Inception模型,減小模型大小,形成兩個小模型。
- NNS1:26M參數,220M FLOPS。
- NNS2:4.3M參數,20M FLOPS。
- NN3與NN4和NN2結構一樣,但輸入變小了。
- NN2原始輸入:224×224
- NN3輸入:160×160
- NN4輸入:96×96
其中,NNS模型可以在手機上運行。
其實網絡模型的細節不用管,將其當做黑盒子就可以了。
數據和評測
在人臉識別領域,我一直認為數據的重要性很大,甚至強于模型,google的數據量自然不能小覷。其訓練數據有100M-200M張圖像,分布在8M個人上。
當然,google訓練的模型在LFW和youtube Faces DB上也進行了評測。
下面說明了多種變量對最終效果的影響
網絡結構的不同
圖像質量的不同
最終生成向量表示的大小的不同
訓練數據大小的不同
對齊與否
在LFW上,使用了兩種模式:
- 直接取LFW圖片的中間部分進行訓練,效果98.87左右。
- 使用額外的人臉對齊工具,效果99.63左右,超過deepid。
總結
- 三元組的目標函數并不是這篇論文首創,我在之前的一些Hash索引的論文中也見過相似的應用。可見,并不是所有的學習特征的模型都必須用softmax。用其他的效果也會好。
- 三元組比softmax的優勢在于
- softmax不直接,(三元組直接優化距離),因而性能也不好。
- softmax產生的特征表示向量都很大,一般超過1000維。
- FaceNet并沒有像DeepFace和DeepID那樣需要對齊。
- FaceNet得到最終表示后不用像DeepID那樣需要再訓練模型進行分類,直接計算距離就好了,簡單而有效。
- 論文并未探討二元對的有效性,直接使用的三元對。
參考文獻
[1]. Schroff F, Kalenichenko D, Philbin J. Facenet: A unified embedding for face recognition and clustering[J]. arXiv preprint arXiv:1503.03832, 2015
總結
以上是生活随笔為你收集整理的FaceNet--Google的人脸识别的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 专访4秒源码商城CTO陈杰:扎根互联网的
- 下一篇: Deep Learning Face R