白话Elasticsearch26-深度探秘搜索技术之function_score自定义相关度分数算法
文章目錄
- 概述
- 官方說明
- 例子
概述
繼續跟中華石杉老師學習ES,第26篇
課程地址: https://www.roncoo.com/view/55
官方說明
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-function-score-query.html
簡單來說: 自定義一個function_score函數,自己將某個field的值,跟es內置算出來的分數進行運算,然后由自己指定的field來進行分數的增強
例子
需求: 看帖子的人越多,那么帖子的分數就越高
先給所有的帖子數據增加follower數量 , 將對帖子搜索得到的分數,跟follower_num進行運算,由follower_num在一定程度上增強帖子的分數
看帖子的人越多,那么帖子的分數就越高
DSL
GET /forum/article/_search {"query": {"function_score": {"query": {"multi_match": {"query": "java spark","fields": ["tile", "content"]}},"field_value_factor": {"field": "follower_num","modifier": "log1p","factor": 0.5},"boost_mode": "sum","max_boost": 5}} }-
如果只有field,那么會將每個doc的分數都乘以follower_num,如果有的doc follower是0,那么分數就會變為0,效果很不好。
-
因此一般會加個log1p函數,公式會變為,new_score = old_score * log(1 + number_of_votes),這樣出來的分數會比較合理 。
-
再加個factor,可以進一步影響分數,new_score = old_score * log(1 + factor * number_of_votes)
- boost_mode,可以決定分數與指定字段的值如何計算 : multiply,replace, sum,min,max,avg
- max_boost,限制計算出來的分數不要超過max_boost指定的值
返回結果:
{"took": 87,"timed_out": false,"_shards": {"total": 1,"successful": 1,"skipped": 0,"failed": 0},"hits": {"total": 2,"max_score": 3.8050528,"hits": [{"_index": "forum","_type": "article","_id": "5","_score": 3.8050528,"_source": {"articleID": "DHJK-B-1395-#Ky5","userID": 3,"hidden": false,"postDate": "2019-05-01","tag": ["elasticsearch"],"tag_cnt": 1,"view_cnt": 10,"title": "this is spark blog","content": "spark is best big data solution based on scala ,an programming language similar to java spark","sub_title": "haha, hello world","author_first_name": "Tonny","author_last_name": "Peter Smith","new_author_last_name": "Peter Smith","new_author_first_name": "Tonny","follower_num": 60}},{"_index": "forum","_type": "article","_id": "2","_score": 1.7247463,"_source": {"articleID": "KDKE-B-9947-#kL5","userID": 1,"hidden": false,"postDate": "2017-01-02","tag": ["java"],"tag_cnt": 1,"view_cnt": 50,"title": "this is java blog","content": "i think java is the best programming language","sub_title": "learned a lot of course","author_first_name": "Smith","author_last_name": "Williams","new_author_last_name": "Williams","new_author_first_name": "Smith","follower_num": 10}}]} }總結
以上是生活随笔為你收集整理的白话Elasticsearch26-深度探秘搜索技术之function_score自定义相关度分数算法的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 白话Elasticsearch24- 深
- 下一篇: 白话Elasticsearch27-深度