白话Elasticsearch23-深度探秘搜索技术之通过ngram分词机制实现index-time搜索推荐
文章目錄
- 概述
- 官網
- 什么是ngram
- 什么是edge ngram
- ngram和index-time搜索推薦原理
- 例子
概述
繼續跟中華石杉老師學習ES,第23篇
課程地址: https://www.roncoo.com/view/55
官網
NGram Tokenizer:
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-ngram-tokenizer.html
NGram Token Filter:
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-ngram-tokenfilter.html
Edge NGram Tokenizer:
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-edgengram-tokenizer.html
Edge NGram Token Filter:
https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-edgengram-tokenfilter.html
什么是ngram
什么是ngram
假設有個單詞quick,5種長度下的ngram
ngram length=1,會被拆成 q u i c k ngram length=2,會被拆成 qu ui ic ck ngram length=3,會被拆成 qui uic ick ngram length=4,會被拆成 quic uick ngram length=5,會被拆成 quick其中任意一個被拆分的部分 就被稱為ngram 。
什么是edge ngram
quick,anchor首字母后進行ngram
q qu qui quic quick上述拆分方式就被稱為edge ngram
使用edge ngram將每個單詞都進行進一步的分詞切分,用切分后的ngram來實現前綴搜索推薦功能
舉個例子 兩個doc
doc1 hello world
doc2 hello we
使用edge ngram拆分
h
he
hel
hell
hello -------> 可以匹配 doc1,doc2
w -------> 可以匹配 doc1,doc2
wo
wor
worl
world
e ---------> 可以匹配 doc2
使用hello w去搜索
hello --> hello,doc1
w --> w,doc1
doc1中hello和w,而且position也匹配,所以,ok,doc1返回,hello world
ngram和index-time搜索推薦原理
搜索的時候,不用再根據一個前綴,然后掃描整個倒排索引了,而是簡單的拿前綴去倒排索引中匹配即可,如果匹配上了,那么就好了,就和match query全文檢索一樣
例子
PUT /my_index {"settings": {"analysis": {"filter": {"autocomplete_filter": { "type": "edge_ngram","min_gram": 1,"max_gram": 20}},"analyzer": {"autocomplete": {"type": "custom","tokenizer": "standard","filter": ["lowercase","autocomplete_filter" ]}}}} }helloworld
設置
使用edge_ngram ,則會被拆分為一下 ,
h he hel知識點: autocomplete
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-analyzer.html
GET /my_index/_analyze {"analyzer": "autocomplete","text": "helll world" }
設置mapping , 查詢的時候還是使用standard
PUT /my_index/_mapping/my_type {"properties": {"title": {"type": "text","analyzer": "autocomplete","search_analyzer": "standard"}} }造數據
PUT /my_index/my_type/1 {"content":"hello Jack" }PUT /my_index/my_type/2 {"content":"hello John" }PUT /my_index/my_type/3 {"content":"hello Jose" }查詢
GET /my_index/my_type/_search {"query": {"match": {"content": "hello J"}} }返回:
{"took": 7,"timed_out": false,"_shards": {"total": 5,"successful": 5,"skipped": 0,"failed": 0},"hits": {"total": 3,"max_score": 0.2876821,"hits": [{"_index": "my_index","_type": "my_type","_id": "2","_score": 0.2876821,"_source": {"content": "hello John"}},{"_index": "my_index","_type": "my_type","_id": "1","_score": 0.2876821,"_source": {"content": "hello Jack"}},{"_index": "my_index","_type": "my_type","_id": "3","_score": 0.2876821,"_source": {"content": "hello Jose"}}]} }- 如果用match,只有hello的也會出來,全文檢索,只是分數比較低
- 推薦使用match_phrase,要求每個term都有,而且position剛好靠著1位,符合我們的期望的
總結
以上是生活随笔為你收集整理的白话Elasticsearch23-深度探秘搜索技术之通过ngram分词机制实现index-time搜索推荐的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 白话Elasticsearch22- 深
- 下一篇: 白话Elasticsearch24- 深