白话Elasticsearch17-深度探秘搜索技术之match_phrase query 短语匹配搜索
文章目錄
- 概述
- 官網
- 近似匹配
- 例子
- match query
- match phrase query
- term position
- match_phrase的基本原理
概述
繼續跟中華石杉老師學習ES,第17篇
課程地址: https://www.roncoo.com/view/55
官網
https://www.elastic.co/guide/en/elasticsearch/reference/current/full-text-queries.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-match-query-phrase.html
近似匹配
假設content字段中有2個語句
java is my favourite programming language, and I also think spark is a very good big data system.java spark are very related, because scala is spark's programming language and scala is also based on jvm like java.使用match query , 搜索java spark ,DSL 大致如下
{"match": {"content": "java spark"} }content 被拆分為兩個單詞 java 和 spark去匹配,所以如上兩個doc都能被查詢出來。
match query,只能搜索到包含java和spark的document,但是不知道java和spark是不是離的很近. 包含java或包含spark,或包含java和spark的doc,都會被查詢出來。我們其實并不知道哪個doc,java和spark距離的比較近。
如果我們希望搜索java spark,中間不能插入任何其他的字符, 這個時候match就無能為力了 。
再比如 , 如果我們要盡量讓java和spark離的很近的document優先返回,要給它一個更高的relevance score,這就涉及到了proximity match,近似匹配.
例子
假設要實現兩個需求:
要實現上述兩個需求,用match做全文檢索,是搞不定的,必須得用proximity match,近似匹配
phrase match:短語匹配
proximity match:近似匹配
這里我們要學習的是phrase match,就是僅僅搜索出java和spark靠在一起的那些doc,比如有個doc,是java use’d spark,不行。必須是比如java spark are very good friends,是可以搜索出來的。
match phrase query,就是要去將多個term作為一個短語,一起去搜索,只有包含這個短語的doc才會作為結果返回。
不像是match query,java spark,java的doc也會返回,spark的doc也會返回。
match query
為了做比對,我們先看下match query的查詢結果
GET /forum/article/_search {"query": {"match": {"content": "java spark"}} }返回結果
{"took": 40,"timed_out": false,"_shards": {"total": 1,"successful": 1,"skipped": 0,"failed": 0},"hits": {"total": 2,"max_score": 1.8166281,"hits": [{"_index": "forum","_type": "article","_id": "5","_score": 1.8166281,"_source": {"articleID": "DHJK-B-1395-#Ky5","userID": 3,"hidden": false,"postDate": "2019-05-01","tag": ["elasticsearch"],"tag_cnt": 1,"view_cnt": 10,"title": "this is spark blog","content": "spark is best big data solution based on scala ,an programming language similar to java spark","sub_title": "haha, hello world","author_first_name": "Tonny","author_last_name": "Peter Smith","new_author_last_name": "Peter Smith","new_author_first_name": "Tonny"}},{"_index": "forum","_type": "article","_id": "2","_score": 0.7721133,"_source": {"articleID": "KDKE-B-9947-#kL5","userID": 1,"hidden": false,"postDate": "2017-01-02","tag": ["java"],"tag_cnt": 1,"view_cnt": 50,"title": "this is java blog","content": "i think java is the best programming language","sub_title": "learned a lot of course","author_first_name": "Smith","author_last_name": "Williams","new_author_last_name": "Williams","new_author_first_name": "Smith"}}]} }可以看到單單包含java的doc也返回了,不是我們想要的結果 。
match phrase query
為了演示match phrase query的功能,我們先調整一下測試數據
POST /forum/article/5/_update {"doc": {"content":"spark is best big data solution based on scala ,an programming language similar to java spark"} }將id=5的doc的content設置為恰巧包含java spark這個短語 。
GET /forum/article/_search {"query": {"match_phrase": {"content": "java spark"}} }返回結果
{"took": 47,"timed_out": false,"_shards": {"total": 1,"successful": 1,"skipped": 0,"failed": 0},"hits": {"total": 1,"max_score": 1.4302213,"hits": [{"_index": "forum","_type": "article","_id": "5","_score": 1.4302213,"_source": {"articleID": "DHJK-B-1395-#Ky5","userID": 3,"hidden": false,"postDate": "2019-05-01","tag": ["elasticsearch"],"tag_cnt": 1,"view_cnt": 10,"title": "this is spark blog","content": "spark is best big data solution based on scala ,an programming language similar to java spark","sub_title": "haha, hello world","author_first_name": "Tonny","author_last_name": "Peter Smith","new_author_last_name": "Peter Smith","new_author_first_name": "Tonny"}}]} }從結果中可以看到只有包含java spark這個短語的doc才返回,只包含java的doc不會返回
term position
分詞后,每個單詞就是一個term
分詞后 , es還記錄了 每個field的位置。
舉個例子 兩個doc 如下:
hello world, java spark doc1
hi, spark java doc2
建立倒排索引后
| hello | doc1(1) | - |
| wolrd | doc1(1) | |
| java | doc1(2) | doc2(2) |
| spark | doc1(3) | doc2(1) |
| hi | doc2(0) |
可以通過如下API來看下
GET _analyze {"text": "hello world, java spark","analyzer": "standard" }返回:
{"tokens": [{"token": "hello","start_offset": 0,"end_offset": 5,"type": "<ALPHANUM>","position": 0},{"token": "world","start_offset": 6,"end_offset": 11,"type": "<ALPHANUM>","position": 1},{"token": "java","start_offset": 13,"end_offset": 17,"type": "<ALPHANUM>","position": 2},{"token": "spark","start_offset": 18,"end_offset": 23,"type": "<ALPHANUM>","position": 3}] }通過position 可以看到位置信息 。
match_phrase的基本原理
理解下索引中的position,match_phrase
兩個doc 如下
hello world, java spark doc1 hi, spark java doc2| hello | doc1(1) | - |
| wolrd | doc1(1) | |
| java | doc1(2) | doc2(2) |
| spark | doc1(3) | doc2(1) |
| hi | doc2(0) |
java spark , 采用match phrase來查詢
首先 java spark 被拆成 java和spark ,分別取索引中查找
java 出現在 doc1(2) doc2(2) spark 出現在 doc1(3) doc2(1)要找到每個term都在的一個共有的那些doc,就是要求一個doc,必須包含每個term,才能拿出來繼續計算
doc1 --> java和spark --> spark position恰巧比java大1 --> java的position是2,spark的position是3,恰好滿足條件
doc1符合條件
doc2 --> java和spark --> java position是2,spark position是1,spark position比java position小1,而不是大1 --> 光是position就不滿足,那么doc2不匹配 .
總結
以上是生活随笔為你收集整理的白话Elasticsearch17-深度探秘搜索技术之match_phrase query 短语匹配搜索的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 白话Elasticsearch16-深度
- 下一篇: 白话Elasticsearch18-深度