3atv精品不卡视频,97人人超碰国产精品最新,中文字幕av一区二区三区人妻少妇,久久久精品波多野结衣,日韩一区二区三区精品

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

李菲菲课程笔记:Deep Learning for Computer Vision – Introduction to Convolution Neural Networks

發布時間:2025/3/21 编程问答 25 豆豆
生活随笔 收集整理的這篇文章主要介紹了 李菲菲课程笔记:Deep Learning for Computer Vision – Introduction to Convolution Neural Networks 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

轉載自:http://www.analyticsvidhya.com/blog/2016/04/deep-learning-computer-vision-introduction-convolution-neural-networks/

Introduction

The power of artificial intelligence is beyond our imagination. We all know robots have already reached a testing phase in some of the powerful countries of the world. Governments, large companies are spending billions in developing this ultra-intelligence creature.?The recent existence of robots have gained attention of many research houses across the world.

Does it excite you as well ? Personally for me, learning about robots & developments in AI started with?a deep curiosity and excitement in me! Let’s learn about computer vision today.

The earliest research in computer vision started way back in 1950s. Since then, we have?come?a long way but still find ourselves far from the ultimate objective. But with neural networks and deep learning, we have become empowered like never before.

Applications of deep learning in vision have taken this technology to a different level and made?sophisticated things?like self-driven cars possible in near future.?In this article, I will also introduce you to Convolution Neural Networks which form the crux of deep learning applications in computer vision.

Note: This article is inspired by?Stanford’s Class on Visual Recognition. Understanding this article requires prior knowledge of Neural Networks. If you are new to neural networks, you can?start here.

Table of Contents

  • Challenges in Computer Vision
  • Overview of Traditional Approaches
  • Review of?Neural Networks Fundamentals
  • Introduction to Convolution Neural Networks
  • Case Study: Increasing power of of CNNs in IMAGENET competition
  • Implementing CNNs?using GraphLab (Practical in Python)
  • ?

    1. Challenges in Computer Vision (CV)

    As the name suggests, the aim of?computer vision (CV) is to imitate the functionality of human eye and brain components responsible for your sense of sight.

    Doing actions?such as recognizing an animal, describing a view, differentiating among visible objects are really a cake-walk for humans. You’d be surprised to know that?it took decades of research to discover and?impart the ability of?detecting an object to?a computer with reasonable accuracy.

    The field of computer vision has witnessed continual?advancements in the past 5 years. One of the most stated advancement is Convolution Neural Networks (CNNs).?Today, deep CNNs form the crux of most?sophisticated fancy computer vision application, such as self-driving cars, auto-tagging of friends in our facebook pictures, facial security features, gesture recognition, automatic number plate recognition, etc.

    Let’s get familiar with it a bit more:

    Object detection?is considered to be the most basic application of computer vision. Rest of the other developments in computer vision are achieved by making small enhancements on top of this. In real life, every time we(humans) open our eyes, we unconsciously detect objects.

    Since it is super-intuitive for us, we fail to appreciate the key challenges involved when we try to design systems similar to our eye. Lets start by looking at some of the key roadblocks:

  • Variations in Viewpoint
    • The same object can have different positions?and?angles in an image depending on the relative position of the object and the observer.
    • There can also be different positions. For instance look at the following images:
    • Though its obvious to know that these are the same object, it is not very easy?to teach this aspect to a?computer (robots or machines).
  • Difference in Illumination
    • Different images can have different light conditions. For instance:
    • Though this image is so dark, we can still recognize that it is a cat. Teaching this to a computer is another challenge.
  • Hidden parts of images
    • Images need not necessarily be complete.?Small or large proportions of the images might be hidden which makes the detection task difficult. For instance:
    • Here, only the face of the?puppy is visible and that too partially, posing another challenge for the computer to recognize.
  • Background Clutter
    • Some images might blend into the background. For instance:
    • If you observe carefully, you can find?a man in this image. As simple as it looks, it’s an uphill task for a computer to learn.
  • These are just some of the challenges which I brought up so that you can appreciate the complexity of the tasks which your eye and brain duo does with such utter ease. Breaking up all these challenges and solving individually is still possible today in computer vision. But we’re still decades away from a system which can get anywhere close to our human eye (which can do everything!).

    This brilliance of our?human body is the reason why researchers have been trying to break the enigma of computer vision by?analyzing the visual mechanics of humans?or other animals. Some of the earliest work in this direction was done by?Hubel and Weisel?with their famous cat experiment in 1959. Read more about it?here.

    This was the first study which emphasized the importance of edge detection for solving the computer vision problem. They were rewarded the?nobel prize for their work.

    Before diving into convolutional neural networks, lets take a quick overview of the traditional or rather elementary?techniques used in computer vision?before deep learning became popular.

    ?

    2. Overview of Traditional Approaches

    Various techniques, other than deep learning are available enhancing computer vision. Though, they work well for simpler problems, but as the data become huge and the task becomes complex, they are no substitute for deep CNNs. Let’s briefly discuss two simple approaches.

  • KNN (K-Nearest Neighbours)
    • Each image is matched with all images in training data. The top K with minimum distances are selected. The majority class of those top K is predicted as output class of the image.
    • Various distance metrics can be used like L1 distance (sum of absolute distance), L2 distance (sum of squares), etc.
    • Drawbacks:
      • Even if we take the image of same object with same illumination and orientation,?the?object might lie?in different locations of image, i.e. left, right or center of image. For instance:
      • Here the same dog is on right?side in first image and left side in second. Though its the same image,?KNN?would give highly non-zero distance?for the 2 images.
      • Similar to above, other challenges mentioned in section 1 will be faced by KNN.
  • Linear Classifiers
    • They use a parametric approach where each pixel value is considered as a parameter.
    • It’s like a?weighted sum of the pixel values with the dimension of the weights matrix depending on the number of outcomes.
    • Intuitively, we can understand this in terms of a template. The weighted sum of pixels forms a template image which is matched with every image. This will also face difficulty in overcoming the challenges discussed in section 1 as single template is difficult to design for all the different cases.
  • I hope this gives some intuition into the challenges faced by approaches other than deep learning. Please note that more sophisticated techniques can be used than the ones discussed above but they would rarely beat a deep learning model.

    ?

    3. Review of?Neural Networks Fundamentals

    Let’s discuss some properties of?a neural networks. I will skip the basics of neural networks here as I have already covered that in my previous article –?Fundamentals of Deep Learning – Starting with Neural Networks.

    Once your fundamentals are sorted, let’s learn in detail some important concepts such as?activation functions, data preprocessing, initializing weights and dropouts.

    ?

    Activation Functions

    There are various activation functions which can be used and this is an active area of research. Let’s discuss some of the popular options:

  • Sigmoid Function
    • Equation:?σ(x) = 1/(1+e-x)
    • Sigmoid activation, also used in logistic regression regression, squashes the input space?from (-inf,inf) to (0,1)
    • But it has various problems and it is?almost never used?in CNNs:
    • Saturated neurons kill the gradient
      • If you observe the above graph carefully, if the input is beyond -5 or 5, the output will be very close to 0 and 1 respectively. Also, in this region the gradients are almost zero. Notice that the tangents in this region will be almost parallel to x-axis thus ~0 slope.
      • As we know that gradients get multiplied in back-propogation, so this small gradient will virtually stop back-propogation into further layers, thus killing the gradient.
    • Outputs are not zero-centered
      • As you can see that all the outputs are between 0 and 1. As these become inputs to the next layer, all the gradients of the next layer will be either positive or negative. So the path to optimum will be zig-zag. I will skip the mathematics here. Please refer?the stanford class referred above for details.
    • Taking the exp() is computationally expensive
      • Though not a big drawback, it has a slight negative impact
  • tanh activation
    • It is simply the hyperbolic tangent function with form:
    • It is always preferred over sigmoid because it solved problem #2, i.e. the outputs are in range (-1,1).
    • But it will still result in killing the gradient and thus not recommended choice.
  • ?ReLU (Rectified Linear Unit)
    • Equation: f(x) = max( 0 , x )
    • It is the most commonly used activation function for CNNs. It has following advantages:
      • Gradient won’t saturate in the positive region
      • Computationally very efficient as simple?thresholding is required
      • Empirically?found to converge faster than sigmoid or tanh.
    • But still it has the following disadvantages:
      • Output is not zero-centered and always positive
      • Gradient is killed for x<0. Few techniques like leaky ReLU and parametric ReLU are used to overcome this and I encourage you to find these
      • Gradient is not defined at x=0. But this can be easily catered using sub-gradients and posts less practical challenges as x=0 is generally a rare case
  • To summarize, ReLU is?mostly the activation function of choice.?If the caveats are kept in mind, these can be used very efficiently.

    ?

    Data Preprocessing

    For images, generally the following preprocessing steps are done:

  • Same Size Images:?All images are converted to the same size and generally in square shape.
  • Mean Centering:?For each pixel, its mean value among all images can be subtracted from each pixel. Sometimes (but rarely) mean centering along red, green and blue channels can also be done
  • Note that normalization is generally not done in images.

    ?

    Weight Initialization

    There can be various techniques for initializing weights. Lets consider a few of them:

  • All zeros
    • This is generally a?bad idea?because in this case all the neuron will generate the same output initially and similar gradients would flow back in back-propagation
    • The results are generally undesirable as network won’t train properly.
  • Gaussian Random Variables
    • The weights can be initialized with random gaussian distribution of 0 mean and small standard deviation (0.1 to 1e-5)
    • This works for shallow networks, i.e. ~5?hidden layers but?not for deep networks
    • In case of deep networks, the small weights make the outputs small and as you move towards the end, the values become even smaller. Thus the gradients will also become small resulting in gradient killing at the end.
    • Note that you need to play with the standard deviation of the gaussian distribution which works well for your network.
  • Xavier Initialization
    • It suggests that variance of the gaussian distribution of weights for each neuron should depend on the number of inputs to the layer.
    • The recommended variance is square root of inputs. So the numpy code for initializing the weights of layer with n inputs is:?np.random.randn(n_in, n_out)*sqrt(1/n_in)
    • A recent research suggested that for ReLU neurons, the recommended update is:?np.random.randn(n_in, n_out)*sqrt(2/n_in). Read this?blog post?for more details.
  • One more thing must be remembered while using ReLU as activation function. It is that the weights initialization might be such that some of the neurons might not get activated because of negative input. This is something that should be checked. You might be surprised to know that 10-20% of the ReLUs might be dead at a particular time while training and even in the end.

    These were just some of the concepts I discussed here. Some more concepts can be of importance like batch normalization, stochastic gradient descent, dropouts which I encourage you to read on your own.

    ?

    4. Introduction to Convolution Neural Networks

    Before going into the details, lets first try to get some intuition into why deep networks work better.

    As we learned?from the drawbacks of earlier approaches, they are unable to cater to the vast amount of variations in images. Deep?CNNs work by?consecutively modeling small pieces of informationand combining them deeper in network.

    One way to understand them is that the first layer will try to?detect edges?and form templates for edge detection. Then subsequent layers will try to?combine them into simpler shapes?and eventually into templates of?different object positions, illumination, scales, etc. The final layers will match an input image with all the templates and the final prediction is like a weighted sum of all of them. So, deep CNNs are able to model complex variations and behaviour giving highly accurate predictions.

    There is an interesting paper on visualization of deep features in CNNs which you can go through to get more intuition –?Understanding Neural Networks Through Deep Visualization.

    For the purpose of explaining CNNs and finally showing an example,?I will be using the CIFAR-10 dataset for explanation here and you can?download the data set?from?here. This dataset has 60,000 images with 10 labels and 6,000 images of each type. Each image is colored and 32×32 in size.

    A CNN typically consists of 3 types of layers:

  • Convolution Layer
  • Pooling Layer
  • Fully Connected Layer
  • You might find some batch normalization layers in some old CNNs but they are not used these days. We’ll consider these one by one.

    ?

    Convolution Layer

    Since convolution layers form the crux of the network, I’ll consider them first. Each layer can be visualized in the form of a?block or a cuboid. For instance in the case of CIFAR-10 data, the input layer would have the following form:

    Here you can see, this is the original image which is 32×32 in height and width. The depth here is 3 which corresponds to the Red, Green and Blue colors, which form the basis of colored images. Now a convolution layer is formed by running a filter over it. A filter is another block or cuboid of smaller height and width but same depth which is swept over this base block. Let’s consider a filter of size 5x5x3.

    We start this filter from the top left corner and sweep it till the bottom left corner. This filter is nothing but a set of eights, i.e. 5x5x3=75 + 1 bias = 76 weights. At each position, the weighted sum of the pixels is calculated as WTX + b and a new value is obtained. A single filter will result in a volume of size 28x28x1 as shown above.

    Note that multiple filters are generally run at each step. Therefore, if 10 filters are used, the output would look like:

    Here the filter weights are parameters which are learned during the back-propagation step. You might have noticed that we got a 28×28 block as output when the input was 32×32. Why so? Let’s look at a simpler case.

    Suppose the initial image had size 6x6xd and the filter has size 3x3xd. Here I’ve kept the depth as d because it can be anything and it’s immaterial as it remains the same in both.?Since depth is same, we can have a look at the front view of how filter would work:

    Here we can see that the result would be 4x4x1 volume block. Notice there is a single output for entire depth of the each location of filter. But you need not do this visualization all the time. Let’s define a generic case where image has dimension NxNxd and filter has FxFxd. Also, lets define another term stride (S) here which is the number of?cells (in above matrix) to move in each step. In the above case, we had a stride of 1 but it can be a higher value as well. So the size of the output will be:

    output size = (N – F)/S + 1

    You can validate the first case where N=32, F=5,?S=1. The output had 28 pixels which is what we get from this formula as well. Please note that some S values might result in non-integer result and we generally don’t use such values.

    Let’s consider an example to consolidate our understanding. Starting with the same image as before of size 32×32, we need to apply 2 filters consecutively, first 10 filters of size 7, stride 1 and next 6 filters of size 5, stride 2. Before looking at the solution below, just think about 2 things:

  • What should be the depth of each filter?
  • What will the resulting size of the images in each step.
  • Here is the answer:

    ?

    Notice here that the size of the images is getting shrunk consecutively. This will?be undesirable in case of deep networks where the size would?become very small too early. Also, it would restrict the use of large size filters as they would result in faster size reduction.

    To prevent this, we generally use a stride of 1 along with?zero-padding of size (F-1)/2. Zero-padding is nothing but adding additional zero-value pixels towards the border of the image.

    Consider the example we saw above with 6×6 image and 3×3 filter. The required padding is (3-1)/2=1. We can visualize the padding as:

    Here you can see that the image now becomes 8×8 because of padding of 1 on each side. So now the output will be of size 6×6 same as the original image.

    Now let’s summarize a convolution layer as following:

    • Input size: W1?x H1?x D1
    • Hyper-parameters:
      • K: #filters
      • F: filter size (FxF)
      • S: stride
      • P: amount of padding
    • Output size: W2?x H2?x D2
      • W21
      • H21
      • D2
    • #parameters = (F.F.D).K + K
      • F.F.D : Number of parameters for each filter (analogous to volume of the cuboid)
      • (F.F.D).K : Volume of each filter multiplied by the number of filters
      • +K: adding K parameters for the bias term

    Some additional points to be taken into consideration:

    • K should be set as powers of 2 for computational efficiency
    • F is generally taken as odd number
    • F=1 might sometimes be used and it makes sense because there is a depth component involved
    • Filters might be called kernels sometimes

    Having understood the convolution layer, lets move on to pooling layer.

    ?

    Pooling Layer

    When we use padding in convolution layer, the image size remains same. So, pooling layers are used to reduce the size of image. They work by sampling in each layer using filters. Consider the following 4×4 layer. So if we use a 2×2 filter with stride 2 and max-pooling, we get the following response:

    Here you can see that 4 2×2 matrix are combined into 1 and their maximum value is taken. Generally, max-pooling is used but other options like average pooling can be considered.

    ?

    Fully Connected Layer

    At the end of convolution and pooling layers, networks generally use fully-connected layers in which each pixel is considered as a separate neuron just like a regular neural network. The last fully-connected layer will contain as many neurons as the number of classes to be predicted. For instance, in CIFAR-10 case, the last fully-connected layer will have 10 neurons.

    ?

    5. Case Study: AlexNet

    I recommend reading the prior section multiple times and getting a hang of the concepts before moving forward.

    In this section, I will discuss the AlexNet architecture in detail. To give you some background, AlexNet is the winning solution of?IMAGENET Challenge 2012. This is one of the most reputed computer vision challenge and 2012 was the first time that a deep learning network was used for solving this problem.

    Also, this resulted in a significantly better result as compared to previous solutions. I will share the network architecture here and review all the concepts learned above.

    The detailed solution has been explained in this?paper. I will explain the overall architecture of the network here. The AlexNet consists of a 11 layer CNN with the following architecture:

    Here you can see 11 layers between input and output. Lets discuss each one of them individually. Note that the output of each layer will be the input of next layer. So you should keep that in mind.

    • Layer 0: Input image
      • Size: 227 x 227 x 3
      • Note that in the paper referenced above, the network diagram has 224x224x3 printed which appears to be a typo.
    • Layer 1: Convolution with 96 filters, size 11×11, stride 4, padding 0
      • Size: 55 x 55 x 96
      • (227-11)/4 + 1 = 55 is the size of the outcome
      • 96 depth because 1 set denotes 1 filter and there are 96 filters
    • Layer 2: Max-Pooling with 3×3 filter, stride 2
      • Size: 27 x 27 x 96
      • (55 – 3)/2 + 1 = 27 is size of outcome
      • depth is same as before, i.e. 96 because pooling is done independently on each layer
    • Layer 3: Convolution with 256 filters, size 5×5, stride 1, padding 2
      • Size: 27 x 27 x 256
      • Because of padding of (5-1)/2=2, the original size is restored
      • 256 depth because of 256 filters
    • Layer 4: Max-Pooling with 3×3 filter, stride 2
      • Size: 13 x 13 x 256
      • (27 – 3)/2 + 1 = 13?is size of outcome
      • Depth is same as before, i.e. 256?because pooling is done independently on each layer
    • Layer 5: Convolution with 384 filters, size 3×3, stride 1, padding 1
      • Size: 13 x 13 x 384
      • Because of padding of (3-1)/2=1, the original size is restored
      • 384?depth because of 384?filters
    • Layer 6: Convolution with 384 filters, size?3×3, stride 1, padding 1
      • Size: 13 x 13 x 384
      • Because of padding of (3-1)/2=1, the original size is restored
      • 384?depth because of?384 filters
    • Layer 7: Convolution with 256?filters, size?3×3, stride 1, padding 1
      • Size: 13 x 13 x?256
      • Because of padding of (3-1)/2=1, the original size is restored
      • 256?depth because of 256?filters
    • Layer 8: Max-Pooling with 3×3 filter, stride 2
      • Size: 6?x 6?x 256
      • (13 – 3)/2 + 1 = 6?is size of outcome
      • Depth is same as before, i.e. 256?because pooling is done independently on each layer
    • Layer 9: Fully Connected with 4096 neuron
      • In this later, each of the 6x6x256=9216 pixels are fed into each of the 4096 neurons and weights determined by back-propagation.
    • Layer 10: Fully Connected with 4096 neuron
      • Similar to layer #9
    • Layer 11: Fully Connected with 1000 neurons
      • This is the last layer and has 1000 neurons because IMAGENET data has 1000 classes to be predicted.

    I understand this is a complicated structure but once you understand the?layers, it’ll give you a much better understanding of the architecture. Note that you?fill find a different representation of the structure if you look at the AlexNet paper. This is because at that GPUs were not very powerful and they used 2 GPUs for training the network. So the work processing was divided between the two.

    I highly encourage you to go through the other advanced solutions of ImageNet challenges after 2012 to get more ideas of how people design these networks. Some of interesting solutions are:

    • ZFNet: winner of 2013 challenge
    • GoogleNet: winner of 2014 challenge
    • VGGNet:?a good solution from 2014 challenge
    • ResNet: winner of 2015 challenge designed by Microsoft Research Team

    This video?gives a brief overview and comparison of these solutions towards the end.

    ?

    6. Implementing CNNs?using GraphLab

    Having understood the theoretical concepts, lets move on to the fun part (practical) and make a basic CNN on the CIFAR-10 dataset which we’ve downloaded before.

    I’ll be using GraphLab for the purpose of running algorithms. Instead of GraphLab, you are free to use?alternatives tools such as?Torch, Theano, Keras, Caffe, TensorFlow, etc. But GraphLab allows a quick and dirty implementation as it takes care of the weights initializations and network architecture?on its own.

    We’ll work on the CIFAR-10 dataset which you can download?from?here. The first step is to load the data. This data is packed in a specific format which can be loaded using the following code:

    import pandas as pd import numpy as np import cPickle#Define a function to load each batch as dictionary: def unpickle(file):fo = open(file, 'rb')dict = cPickle.load(fo)fo.close()return dict#Make dictionaries by calling the above function: batch1 = unpickle('data/data_batch_1') batch2 = unpickle('data/data_batch_2') batch3 = unpickle('data/data_batch_3') batch4 = unpickle('data/data_batch_4') batch5 = unpickle('data/data_batch_5') batch_test = unpickle('data/test_batch')#Define a function to convert this dictionary into dataframe with image pixel array and labels: def get_dataframe(batch):df = pd.DataFrame(batch['data'])df['image'] = df.as_matrix().tolist()df.drop(range(3072),axis=1,inplace=True)df['label'] = batch['labels']return df#Define train and test files: train = pd.concat([get_dataframe(batch1),get_dataframe(batch2),get_dataframe(batch3),get_dataframe(batch4),get_dataframe(batch5)],ignore_index=True) test = get_dataframe(batch_test)

    We can verify this data by looking at the head and shape of data as follow:

    print train.head()

    print train.shape, test.shape

    Since we’ll be using graphlab, the next step is to convert this into a graphlab SFrame and run neural network. Let’s convert the data first:

    import graphlab as gl gltrain = gl.SFrame(train) gltest = gl.SFrame(test)

    GraphLab has a functionality of automatically creating a neural network based on the data. Lets run that as a baseline model before going into an advanced model.

    model = gl.neuralnet_classifier.create(gltrain, target='label', validation_set=None)

    Here it used a simple fully connected network with 2 hidden layers and 10 neurons each. Let’s evaluate this model on test data.

    model.evaluate(gltest)

    As you can see that we have a pretty low accuracy of ~15%. This is because it is a very fundamental network. Lets try to make a CNN now. But if we?go about training a deep CNN from scratch, we will face the following challenges:

  • The available data is very less to capture all the required features
  • Training deep CNNs generally requires a GPU as a CPU is not powerful enough to perform the required calculations. Thus we won’t be able to run it on our system. We can probably rent an Amazom AWS instance.
  • To overcome these challenges, we can use?pre-trained networks. These are nothing but networks like AlexNet which are pre-trained on many images and the weights for deep layers have been determined. The only challenge is to find a pre-trianed network which has been trained on images similar to the one we want to train. If the pre-trained network is not made on images of similar domain, then the features will not exactly make sense and classifier will not be of higher accuracy.

    Before proceeding further, we need to convert these images into the size used in ImageNet which we’re using for classification. The GraphLab model is based on 256×256 size images. So we need to convert our images to that size. Lets do it using the following code:

    #Convert pixels to graphlab image format gltrain['glimage'] = gl.SArray(gltrain['image']).pixel_array_to_image(32, 32, 3, allow_rounding = True) gltest['glimage'] = gl.SArray(gltest['image']).pixel_array_to_image(32, 32, 3, allow_rounding = True) #Remove the original column gltrain.remove_column('image') gltest.remove_column('image') gltrain.head()

    Here we can see that a new column of type graphlab image has been created but the images are in 32×32 size. So we convert them to 256×256 using following code:

    #Convert into 256x256 size gltrain['image'] = gl.image_analysis.resize(gltrain['glimage'], 256, 256, 3) gltest['image'] = gl.image_analysis.resize(gltest['glimage'], 256, 256, 3) #Remove old column: gltrain.remove_column('glimage') gltest.remove_column('glimage') gltrain.head()

    Now we can see that the image has been converted into the desired size. Next, we will load the ImageNet pre-trained model in graphlab and use?the features created in its last layer into a simple classifier and make predictions.

    Lets start by loading the pre-trained model.

    #Load the pre-trained model: pretrained_model = gl.load_model('http://s3.amazonaws.com/GraphLab-Datasets/deeplearning/imagenet_model_iter45')

    Now we have to use this model and extract features which will be passed into a classifier. Note that the following operations may take a lot of computing time. I use a Macbook Pro 15″ and I had to leave it for whole night!

    gltrain['features'] = pretrained_model.extract_features(gltrain) gltest['features'] = pretrained_model.extract_features(gltest)

    Lets have a look at the data to make sure we have the features:

    gltrain.head()

    Though, we have the features with us, notice here that lot of them are zeros. You can understand this as a result of smaller data set. ImageNet was created on 1.2Mn images. So there would be many features in those images that don’t make sense for this data, thus resulting in zero outcome.

    Now lets create a classifier using graphlab. The advantage with “classifier”?function is that it will automatically create various classifiers and chose the best model.

    simple_classifier = graphlab.classifier.create(gltrain, features = ['features'], target = 'label')

    The various outputs are:

  • Boosted Trees Classifier
  • Random Forest?Classifier

  • Decision Tree?Classifier

  • Logistic Regression?Classifier
  • The final model selection is based on a validation set with 5% of the data. The results are:

    So we can see that?Boosted Trees Classifier has been chosen as the final model. Let’s look at the results on test data:

    simple_classifier.evaluate(gltest)

    So we can see that the test accuracy is now ~50%. It’s a decent jump from 15% to 50% but there is still huge potential to do better. The idea here was to get you started and I will skip the next steps. Here are some things which you can try:

  • Remove the redundant features in the data
  • Perform hyper-parameter tuning in models
  • Search for pre-trained models which are trained on images similar to this dataset
  • You can find many open-source?solutions for this dataset which give >95% accuracy. You should check those out. Please feel free to try them and post your solutions in comments below.

    ?

    End Notes

    In this article, we covered the basics of computer vision using deep Convolution Neural Networks (CNNs). We started by appreciating the challenges involved in designing artificial systems which mimic the eye. Then, we looked at some of the traditional techniques, prior to deep learning, and?got some intuition into their drawbacks.

    We moved on to understanding the some aspects of tuning a?neural networks such as activation functions, weights initialization?and data-preprocessing. Next, we got some intuition into why deep CNNs should work better than traditional approaches and we understood the?different elements present in a general deep CNN.

    Subsequently, we consolidated our understanding by analyzing the architecture of AlexNet, the winning solution of ImageNet 2012 challenge. Finally, we took the CIFAR-10 data and implemented a CNN on it using a pre-trained AlexNet deep network.

    ?

    ?

    總結

    以上是生活随笔為你收集整理的李菲菲课程笔记:Deep Learning for Computer Vision – Introduction to Convolution Neural Networks的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

    成人精品一区二区三区中文字幕 | 激情内射日本一区二区三区 | 亚洲日韩av一区二区三区四区 | 亚洲の无码国产の无码步美 | 久久久精品国产sm最大网站 | a在线亚洲男人的天堂 | 激情国产av做激情国产爱 | 性史性农村dvd毛片 | 国产小呦泬泬99精品 | av小次郎收藏 | 国内少妇偷人精品视频 | 人妻体内射精一区二区三四 | 最近免费中文字幕中文高清百度 | 亚洲综合无码一区二区三区 | 荡女精品导航 | 亚洲综合伊人久久大杳蕉 | 我要看www免费看插插视频 | 丰腴饱满的极品熟妇 | 久久这里只有精品视频9 | 3d动漫精品啪啪一区二区中 | 强伦人妻一区二区三区视频18 | 偷窥日本少妇撒尿chinese | 一二三四在线观看免费视频 | 少妇高潮一区二区三区99 | 欧美午夜特黄aaaaaa片 | 狠狠色欧美亚洲狠狠色www | 亚洲国产成人av在线观看 | √天堂资源地址中文在线 | 亚洲人成影院在线观看 | 日韩精品a片一区二区三区妖精 | 亚洲天堂2017无码中文 | 国产精品无码久久av | 粗大的内捧猛烈进出视频 | 性色欲网站人妻丰满中文久久不卡 | 国产av久久久久精东av | 少妇性l交大片欧洲热妇乱xxx | 成人试看120秒体验区 | 乱人伦人妻中文字幕无码 | 在线欧美精品一区二区三区 | 久久精品成人欧美大片 | √天堂资源地址中文在线 | 大地资源中文第3页 | 思思久久99热只有频精品66 | 少妇性l交大片欧洲热妇乱xxx | 日韩精品成人一区二区三区 | 免费男性肉肉影院 | 国产精品毛片一区二区 | 午夜福利一区二区三区在线观看 | 麻豆国产丝袜白领秘书在线观看 | 人妻尝试又大又粗久久 | 曰韩无码二三区中文字幕 | 国产精华av午夜在线观看 | 欧美丰满老熟妇xxxxx性 | 日本精品少妇一区二区三区 | 中文字幕乱妇无码av在线 | 国产97色在线 | 免 | 中文字幕无码日韩专区 | 国产亚洲精品久久久闺蜜 | 国产亚洲人成在线播放 | 久久99精品久久久久婷婷 | 免费无码午夜福利片69 | 国产午夜福利亚洲第一 | 亚洲精品国产精品乱码不卡 | 欧美黑人巨大xxxxx | 国产精品无码mv在线观看 | 亚洲 另类 在线 欧美 制服 | 亚洲色在线无码国产精品不卡 | 午夜福利电影 | 久久伊人色av天堂九九小黄鸭 | 国産精品久久久久久久 | 国产成人综合色在线观看网站 | 国产猛烈高潮尖叫视频免费 | 成人免费无码大片a毛片 | 少妇太爽了在线观看 | 国产午夜亚洲精品不卡 | 欧美人与善在线com | 久久亚洲a片com人成 | 国产乱子伦视频在线播放 | 亚洲经典千人经典日产 | 水蜜桃亚洲一二三四在线 | 亚洲综合在线一区二区三区 | 午夜精品久久久久久久久 | 97色伦图片97综合影院 | aⅴ在线视频男人的天堂 | 亚洲无人区午夜福利码高清完整版 | 99久久无码一区人妻 | 乱中年女人伦av三区 | 国产激情精品一区二区三区 | 日韩人妻系列无码专区 | 久久精品中文字幕大胸 | 国产av无码专区亚洲a∨毛片 | 无码人妻黑人中文字幕 | 学生妹亚洲一区二区 | 精品国产av色一区二区深夜久久 | 国产一精品一av一免费 | 国产情侣作爱视频免费观看 | 久久97精品久久久久久久不卡 | 大乳丰满人妻中文字幕日本 | 亚洲精品一区二区三区大桥未久 | 麻花豆传媒剧国产免费mv在线 | 少妇邻居内射在线 | 国产猛烈高潮尖叫视频免费 | 国产香蕉97碰碰久久人人 | 伊人久久大香线蕉av一区二区 | 久在线观看福利视频 | 亚洲经典千人经典日产 | 国产福利视频一区二区 | 内射后入在线观看一区 | 亚洲精品国产a久久久久久 | 亚洲午夜久久久影院 | 亚洲精品一区二区三区大桥未久 | 国产麻豆精品精东影业av网站 | 99久久99久久免费精品蜜桃 | 波多野结衣av一区二区全免费观看 | 男人的天堂2018无码 | 4hu四虎永久在线观看 | 久久伊人色av天堂九九小黄鸭 | 国产猛烈高潮尖叫视频免费 | 蜜臀aⅴ国产精品久久久国产老师 | 国产精品人人爽人人做我的可爱 | 亚洲中文字幕无码一久久区 | 在线精品国产一区二区三区 | 亚洲精品一区二区三区在线 | 在线а√天堂中文官网 | 中文亚洲成a人片在线观看 | 国产成人人人97超碰超爽8 | 永久免费精品精品永久-夜色 | 亚洲精品综合五月久久小说 | 又粗又大又硬毛片免费看 | 夜先锋av资源网站 | 精品无码一区二区三区的天堂 | 中文毛片无遮挡高清免费 | 国产人妻大战黑人第1集 | 中文字幕无码av激情不卡 | 青春草在线视频免费观看 | 中文无码成人免费视频在线观看 | 国精品人妻无码一区二区三区蜜柚 | 久久精品丝袜高跟鞋 | 国产av人人夜夜澡人人爽麻豆 | 男人扒开女人内裤强吻桶进去 | 国产精品.xx视频.xxtv | 亚洲热妇无码av在线播放 | 波多野42部无码喷潮在线 | 久久久久久亚洲精品a片成人 | 性欧美熟妇videofreesex | 九九在线中文字幕无码 | 精品久久久久久人妻无码中文字幕 | 国产一区二区三区精品视频 | 日韩少妇内射免费播放 | 久久久久99精品成人片 | 国产午夜无码视频在线观看 | 欧美人与善在线com | 一本久道久久综合婷婷五月 | 欧美亚洲日韩国产人成在线播放 | 亚洲国产精品一区二区美利坚 | 伊人久久大香线焦av综合影院 | 丰满人妻一区二区三区免费视频 | 精品久久综合1区2区3区激情 | 久久99精品久久久久婷婷 | 成人试看120秒体验区 | 人妻天天爽夜夜爽一区二区 | 奇米影视7777久久精品 | 亚洲自偷自拍另类第1页 | 少妇太爽了在线观看 | a国产一区二区免费入口 | 日本精品人妻无码免费大全 | 97无码免费人妻超级碰碰夜夜 | 亚洲综合无码久久精品综合 | 国产成人久久精品流白浆 | 国产婷婷色一区二区三区在线 | 国产97色在线 | 免 | 亚洲七七久久桃花影院 | 女人色极品影院 | 天干天干啦夜天干天2017 | 欧美 亚洲 国产 另类 | 老熟女重囗味hdxx69 | 午夜丰满少妇性开放视频 | 欧美肥老太牲交大战 | 久久亚洲精品成人无码 | 日本一本二本三区免费 | 免费网站看v片在线18禁无码 | 色欲av亚洲一区无码少妇 | 无码福利日韩神码福利片 | 日韩在线不卡免费视频一区 | 18禁黄网站男男禁片免费观看 | 99riav国产精品视频 | 欧美野外疯狂做受xxxx高潮 | 精品国产av色一区二区深夜久久 | 国内精品久久毛片一区二区 | 欧洲熟妇精品视频 | 亚洲成a人片在线观看日本 | 久久精品一区二区三区四区 | 中文字幕久久久久人妻 | 精品国产一区av天美传媒 | 欧美成人免费全部网站 | 99久久精品无码一区二区毛片 | 国产两女互慰高潮视频在线观看 | 国产亚洲精品久久久久久 | 麻豆成人精品国产免费 | 在线精品国产一区二区三区 | 亚洲狠狠婷婷综合久久 | 日韩无套无码精品 | 日本精品人妻无码免费大全 | 国产午夜视频在线观看 | 色偷偷人人澡人人爽人人模 | 欧美乱妇无乱码大黄a片 | 97夜夜澡人人爽人人喊中国片 | 色五月丁香五月综合五月 | 国产国语老龄妇女a片 | 久久久婷婷五月亚洲97号色 | 久久99精品久久久久婷婷 | 久久亚洲日韩精品一区二区三区 | 国产精品久久久av久久久 | 成人一在线视频日韩国产 | 精品厕所偷拍各类美女tp嘘嘘 | 国产无套内射久久久国产 | 国产又粗又硬又大爽黄老大爷视 | 无码乱肉视频免费大全合集 | 久久综合给合久久狠狠狠97色 | 日本熟妇人妻xxxxx人hd | 99久久精品日本一区二区免费 | 狠狠躁日日躁夜夜躁2020 | 亚洲色大成网站www国产 | 国产精品亚洲lv粉色 | 色诱久久久久综合网ywww | 综合网日日天干夜夜久久 | 国产性生交xxxxx无码 | 鲁大师影院在线观看 | 久久久久亚洲精品中文字幕 | 台湾无码一区二区 | 国产成人精品久久亚洲高清不卡 | 亚洲毛片av日韩av无码 | 亚洲男人av香蕉爽爽爽爽 | 激情五月综合色婷婷一区二区 | 日日碰狠狠躁久久躁蜜桃 | 精品欧美一区二区三区久久久 | 大地资源中文第3页 | 无码av岛国片在线播放 | 国产成人久久精品流白浆 | 天天燥日日燥 | 精品乱码久久久久久久 | 欧美 亚洲 国产 另类 | 帮老师解开蕾丝奶罩吸乳网站 | 国产偷国产偷精品高清尤物 | 曰本女人与公拘交酡免费视频 | 国产莉萝无码av在线播放 | 欧美日韩一区二区免费视频 | 精品国产av色一区二区深夜久久 | 2019nv天堂香蕉在线观看 | 亚洲色大成网站www国产 | 亚洲日本在线电影 | 我要看www免费看插插视频 | 亚洲精品一区二区三区四区五区 | 无码人妻丰满熟妇区毛片18 | 欧美激情一区二区三区成人 | 精品无码一区二区三区爱欲 | 东京热无码av男人的天堂 | 亚洲精品综合一区二区三区在线 | 熟妇人妻无乱码中文字幕 | 成人精品一区二区三区中文字幕 | 久精品国产欧美亚洲色aⅴ大片 | 日本精品久久久久中文字幕 | 激情五月综合色婷婷一区二区 | 99麻豆久久久国产精品免费 | 国产高潮视频在线观看 | 日欧一片内射va在线影院 | 麻豆人妻少妇精品无码专区 | 2020久久香蕉国产线看观看 | 欧美精品一区二区精品久久 | 中文字幕乱码亚洲无线三区 | 亚洲成熟女人毛毛耸耸多 | 狠狠躁日日躁夜夜躁2020 | 高清不卡一区二区三区 | 日本爽爽爽爽爽爽在线观看免 | 无套内谢的新婚少妇国语播放 | 夜夜影院未满十八勿进 | 国精产品一区二区三区 | 动漫av一区二区在线观看 | 欧美成人家庭影院 | 粗大的内捧猛烈进出视频 | 亚洲码国产精品高潮在线 | 任你躁国产自任一区二区三区 | 高中生自慰www网站 | 少妇无套内谢久久久久 | 亚洲欧美中文字幕5发布 | 欧美喷潮久久久xxxxx | 久久精品国产大片免费观看 | 中文字幕无码av波多野吉衣 | 人人妻人人澡人人爽欧美一区九九 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 四虎4hu永久免费 | 国产人妖乱国产精品人妖 | 人妻互换免费中文字幕 | 亚洲日韩乱码中文无码蜜桃臀网站 | 三上悠亚人妻中文字幕在线 | 国产xxx69麻豆国语对白 | 丝袜美腿亚洲一区二区 | 亚洲国精产品一二二线 | 色一情一乱一伦一区二区三欧美 | 女人被男人爽到呻吟的视频 | 天天拍夜夜添久久精品大 | 亚洲一区二区三区在线观看网站 | 欧美日韩色另类综合 | 中文字幕无码日韩专区 | 亚洲热妇无码av在线播放 | 福利一区二区三区视频在线观看 | 精品厕所偷拍各类美女tp嘘嘘 | 丁香啪啪综合成人亚洲 | 精品一区二区三区波多野结衣 | 亚洲国产精品久久久天堂 | 成人免费视频一区二区 | 毛片内射-百度 | 秋霞成人午夜鲁丝一区二区三区 | 东京热无码av男人的天堂 | 日本一区二区三区免费播放 | 国内老熟妇对白xxxxhd | 国产成人精品视频ⅴa片软件竹菊 | 在线观看国产一区二区三区 | 欧美性猛交内射兽交老熟妇 | 国产内射老熟女aaaa | 婷婷六月久久综合丁香 | 国产莉萝无码av在线播放 | 在线а√天堂中文官网 | 国产无遮挡吃胸膜奶免费看 | 老子影院午夜精品无码 | 久久综合九色综合97网 | 激情亚洲一区国产精品 | 欧美freesex黑人又粗又大 | 老子影院午夜精品无码 | 波多野结衣乳巨码无在线观看 | 中国大陆精品视频xxxx | 蜜臀aⅴ国产精品久久久国产老师 | 麻豆国产97在线 | 欧洲 | 亚洲欧洲无卡二区视頻 | 男人和女人高潮免费网站 | 狠狠色欧美亚洲狠狠色www | 久久精品中文闷骚内射 | 青草视频在线播放 | 日本护士毛茸茸高潮 | 97资源共享在线视频 | 国产艳妇av在线观看果冻传媒 | 狠狠色噜噜狠狠狠7777奇米 | 亚洲精品国产精品乱码视色 | a在线亚洲男人的天堂 | 日日躁夜夜躁狠狠躁 | 国产真实乱对白精彩久久 | 无码人妻黑人中文字幕 | 蜜臀av在线播放 久久综合激激的五月天 | 夜夜夜高潮夜夜爽夜夜爰爰 | 国产精品二区一区二区aⅴ污介绍 | 色窝窝无码一区二区三区色欲 | 久久久久99精品成人片 | 又大又黄又粗又爽的免费视频 | 亚洲中文字幕在线无码一区二区 | 久久综合久久自在自线精品自 | 久青草影院在线观看国产 | 国精产品一区二区三区 | 亚洲欧美日韩成人高清在线一区 | 亚洲精品国产精品乱码不卡 | 亚洲国产综合无码一区 | 在线观看免费人成视频 | 亚洲成av人片天堂网无码】 | 色情久久久av熟女人妻网站 | 国产熟妇另类久久久久 | 久久精品中文闷骚内射 | 99国产精品白浆在线观看免费 | 国产精品久久久一区二区三区 | 亚洲欧美日韩国产精品一区二区 | 亚洲最大成人网站 | 一区二区传媒有限公司 | 嫩b人妻精品一区二区三区 | 少妇厨房愉情理9仑片视频 | 久久国语露脸国产精品电影 | 国产午夜福利100集发布 | 色综合久久久无码中文字幕 | 欧美成人午夜精品久久久 | 精品成人av一区二区三区 | 亚洲色大成网站www | 一本精品99久久精品77 | 精品一区二区三区无码免费视频 | 日韩人妻系列无码专区 | 老熟妇乱子伦牲交视频 | 国产精品久免费的黄网站 | 中文亚洲成a人片在线观看 | 麻花豆传媒剧国产免费mv在线 | 亚洲精品一区二区三区在线观看 | 国产av无码专区亚洲awww | 欧美乱妇无乱码大黄a片 | 国产精品va在线播放 | 一区二区三区乱码在线 | 欧洲 | 99riav国产精品视频 | 18无码粉嫩小泬无套在线观看 | 亚洲日韩乱码中文无码蜜桃臀网站 | 国产成人综合美国十次 | 国产97人人超碰caoprom | 久久久久国色av免费观看性色 | 午夜无码区在线观看 | 少妇一晚三次一区二区三区 | 日韩精品成人一区二区三区 | 亚洲中文无码av永久不收费 | 国产在线一区二区三区四区五区 | 成人无码影片精品久久久 | 欧美丰满老熟妇xxxxx性 | 久久成人a毛片免费观看网站 | 日韩av无码一区二区三区不卡 | 日日鲁鲁鲁夜夜爽爽狠狠 | 男人扒开女人内裤强吻桶进去 | 国产人妻大战黑人第1集 | 牲欲强的熟妇农村老妇女 | 亚洲国产成人av在线观看 | 清纯唯美经典一区二区 | 兔费看少妇性l交大片免费 | 国产国产精品人在线视 | 中国女人内谢69xxxxxa片 | 亚洲伊人久久精品影院 | 国内精品人妻无码久久久影院 | 亚洲精品中文字幕乱码 | 成人免费视频一区二区 | 精品欧洲av无码一区二区三区 | 一本久久伊人热热精品中文字幕 | 99久久99久久免费精品蜜桃 | 国产乱子伦视频在线播放 | 女人被男人爽到呻吟的视频 | 性欧美videos高清精品 | 台湾无码一区二区 | 国产精品国产三级国产专播 | 天天躁夜夜躁狠狠是什么心态 | 131美女爱做视频 | 欧美日韩综合一区二区三区 | 国产成人无码午夜视频在线观看 | 97精品国产97久久久久久免费 | 999久久久国产精品消防器材 | 亚洲自偷自偷在线制服 | 在线观看免费人成视频 | 久久久久久久久888 | 国产精品久久精品三级 | 国产人妻久久精品二区三区老狼 | 国产另类ts人妖一区二区 | 日本乱偷人妻中文字幕 | 国产亚洲日韩欧美另类第八页 | 老司机亚洲精品影院无码 | 午夜精品久久久内射近拍高清 | 天下第一社区视频www日本 | 亚洲色在线无码国产精品不卡 | 成人精品视频一区二区三区尤物 | 自拍偷自拍亚洲精品10p | 无套内谢的新婚少妇国语播放 | 偷窥日本少妇撒尿chinese | 色欲人妻aaaaaaa无码 | 在线欧美精品一区二区三区 | 久久久久久久人妻无码中文字幕爆 | 日日碰狠狠躁久久躁蜜桃 | 国产免费久久精品国产传媒 | 欧美人妻一区二区三区 | 亚洲呦女专区 | 成人免费视频一区二区 | 给我免费的视频在线观看 | 亚洲精品久久久久久久久久久 | 国产熟妇高潮叫床视频播放 | 日韩欧美中文字幕在线三区 | 国产精品高潮呻吟av久久 | 国产精品久免费的黄网站 | 精品欧洲av无码一区二区三区 | 欧美兽交xxxx×视频 | 扒开双腿吃奶呻吟做受视频 | 成人欧美一区二区三区 | 久久精品一区二区三区四区 | 强伦人妻一区二区三区视频18 | 四虎国产精品一区二区 | 亚拍精品一区二区三区探花 | 亚洲人成网站免费播放 | 正在播放老肥熟妇露脸 | 人人妻人人藻人人爽欧美一区 | 国产熟女一区二区三区四区五区 | 久久99精品久久久久婷婷 | 日韩人妻无码一区二区三区久久99 | 久久亚洲a片com人成 | 免费看男女做好爽好硬视频 | 无码中文字幕色专区 | 久久精品国产大片免费观看 | 精品少妇爆乳无码av无码专区 | 久久久精品人妻久久影视 | 久久精品国产一区二区三区 | 中文字幕无码日韩欧毛 | 亚洲综合另类小说色区 | aa片在线观看视频在线播放 | 东京无码熟妇人妻av在线网址 | 性色欲网站人妻丰满中文久久不卡 | 精品欧洲av无码一区二区三区 | 亚洲国产欧美在线成人 | 亚洲无人区一区二区三区 | 无码人妻精品一区二区三区下载 | 午夜精品一区二区三区的区别 | 日本丰满熟妇videos | 国产明星裸体无码xxxx视频 | 精品人人妻人人澡人人爽人人 | 久久久久成人片免费观看蜜芽 | 蜜桃视频插满18在线观看 | 日本欧美一区二区三区乱码 | 国产精品久久久 | 欧美日韩人成综合在线播放 | 亚洲日韩av一区二区三区中文 | 成人aaa片一区国产精品 | 少妇被黑人到高潮喷出白浆 | 国产97人人超碰caoprom | 国产明星裸体无码xxxx视频 | 国产麻豆精品精东影业av网站 | 日本乱人伦片中文三区 | 精品无人区无码乱码毛片国产 | 国产黄在线观看免费观看不卡 | 一本久久a久久精品vr综合 | 精品无码国产自产拍在线观看蜜 | 又大又紧又粉嫩18p少妇 | 99国产精品白浆在线观看免费 | 成人无码影片精品久久久 | 国产内射老熟女aaaa | 蜜臀av无码人妻精品 | 免费国产成人高清在线观看网站 | 牲欲强的熟妇农村老妇女视频 | 色一情一乱一伦一区二区三欧美 | 久久国内精品自在自线 | 好爽又高潮了毛片免费下载 | 亚洲一区二区三区播放 | 亚洲狠狠色丁香婷婷综合 | 奇米影视888欧美在线观看 | 国产精品无码一区二区三区不卡 | 国产午夜视频在线观看 | 国产人妻精品一区二区三区不卡 | 色欲综合久久中文字幕网 | 成人免费视频在线观看 | 亚洲 日韩 欧美 成人 在线观看 | 国产一区二区三区四区五区加勒比 | 国产熟妇高潮叫床视频播放 | 天干天干啦夜天干天2017 | 无码av最新清无码专区吞精 | 久久综合久久自在自线精品自 | 国产xxx69麻豆国语对白 | 波多野结衣av在线观看 | 伊人久久大香线焦av综合影院 | 欧美乱妇无乱码大黄a片 | 高清国产亚洲精品自在久久 | 国产福利视频一区二区 | 嫩b人妻精品一区二区三区 | 99久久久国产精品无码免费 | 日本一卡2卡3卡四卡精品网站 | 国产精品久久久一区二区三区 | 免费视频欧美无人区码 | 东京热一精品无码av | 亚洲色www成人永久网址 | 国产成人无码区免费内射一片色欲 | 99国产精品白浆在线观看免费 | 东京无码熟妇人妻av在线网址 | 蜜臀av无码人妻精品 | 扒开双腿疯狂进出爽爽爽视频 | 午夜精品一区二区三区的区别 | 亚欧洲精品在线视频免费观看 | 国产极品美女高潮无套在线观看 | 妺妺窝人体色www在线小说 | 无码帝国www无码专区色综合 | 免费无码午夜福利片69 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 国产精品va在线播放 | 色欲人妻aaaaaaa无码 | 日日鲁鲁鲁夜夜爽爽狠狠 | 狠狠cao日日穞夜夜穞av | 国产精品福利视频导航 | 亚洲精品国产a久久久久久 | 国产精品久久久久久无码 | 精品国精品国产自在久国产87 | 我要看www免费看插插视频 | 国产乱子伦视频在线播放 | 国产高清av在线播放 | 日本www一道久久久免费榴莲 | 老子影院午夜精品无码 | 色婷婷综合激情综在线播放 | 一二三四社区在线中文视频 | 5858s亚洲色大成网站www | 色婷婷香蕉在线一区二区 | 日本熟妇浓毛 | 一本久道久久综合婷婷五月 | 全黄性性激高免费视频 | 欧美丰满熟妇xxxx | 免费无码的av片在线观看 | 成人性做爰aaa片免费看 | 国产精品无码永久免费888 | 久久精品国产大片免费观看 | 亚洲理论电影在线观看 | 性史性农村dvd毛片 | 狂野欧美性猛交免费视频 | 四虎影视成人永久免费观看视频 | 丰满岳乱妇在线观看中字无码 | 日日橹狠狠爱欧美视频 | 国产亚洲精品久久久久久大师 | 一本大道伊人av久久综合 | 天堂久久天堂av色综合 | 丰满少妇熟乱xxxxx视频 | 曰韩无码二三区中文字幕 | 免费中文字幕日韩欧美 | 免费人成网站视频在线观看 | 成人影院yy111111在线观看 | 沈阳熟女露脸对白视频 | 中文精品无码中文字幕无码专区 | 欧美国产日产一区二区 | 欧美放荡的少妇 | 天天av天天av天天透 | a片在线免费观看 | 亚洲gv猛男gv无码男同 | 日韩亚洲欧美中文高清在线 | 老太婆性杂交欧美肥老太 | 久久婷婷五月综合色国产香蕉 | 成在人线av无码免费 | 2019nv天堂香蕉在线观看 | 又粗又大又硬毛片免费看 | 300部国产真实乱 | 激情亚洲一区国产精品 | 鲁大师影院在线观看 | 亚洲精品无码国产 | 欧美性猛交内射兽交老熟妇 | 未满成年国产在线观看 | 荫蒂被男人添的好舒服爽免费视频 | 天堂在线观看www | 日日夜夜撸啊撸 | 国产艳妇av在线观看果冻传媒 | 国产人成高清在线视频99最全资源 | 97无码免费人妻超级碰碰夜夜 | 精品国精品国产自在久国产87 | 亚洲无人区一区二区三区 | 又大又紧又粉嫩18p少妇 | 国产绳艺sm调教室论坛 | 久久五月精品中文字幕 | 欧美精品在线观看 | 天堂а√在线地址中文在线 | 自拍偷自拍亚洲精品被多人伦好爽 | 免费观看黄网站 | 大胆欧美熟妇xx | 99精品国产综合久久久久五月天 | 久久亚洲精品中文字幕无男同 | 给我免费的视频在线观看 | 国产又爽又猛又粗的视频a片 | 国产精品99爱免费视频 | 亚洲精品久久久久avwww潮水 | 国产又粗又硬又大爽黄老大爷视 | 欧美国产日韩亚洲中文 | 在线播放免费人成毛片乱码 | 久久精品国产一区二区三区 | 久久99国产综合精品 | 国产九九九九九九九a片 | 中文字幕无码免费久久9一区9 | 捆绑白丝粉色jk震动捧喷白浆 | 国内综合精品午夜久久资源 | 7777奇米四色成人眼影 | 亚洲码国产精品高潮在线 | 久久天天躁狠狠躁夜夜免费观看 | 精品水蜜桃久久久久久久 | 欧美阿v高清资源不卡在线播放 | 人妻与老人中文字幕 | 欧洲极品少妇 | 欧美日韩色另类综合 | 日本一区二区三区免费播放 | 国产美女极度色诱视频www | 在线成人www免费观看视频 | 极品嫩模高潮叫床 | 日本高清一区免费中文视频 | 久久亚洲精品成人无码 | 国产精品无码一区二区桃花视频 | 亚洲日韩av一区二区三区中文 | 中文字幕无码免费久久9一区9 | 日本丰满熟妇videos | 无码国产色欲xxxxx视频 | 日日夜夜撸啊撸 | 精品欧美一区二区三区久久久 | 大肉大捧一进一出视频出来呀 | 国产片av国语在线观看 | 一本久道高清无码视频 | 免费观看又污又黄的网站 | 亚洲人成影院在线无码按摩店 | 鲁一鲁av2019在线 | 真人与拘做受免费视频一 | 丰满少妇弄高潮了www | 欧美阿v高清资源不卡在线播放 | 国产成人一区二区三区在线观看 | 男女超爽视频免费播放 | 久久精品女人天堂av免费观看 | √天堂资源地址中文在线 | 久久人人爽人人爽人人片ⅴ | 一本加勒比波多野结衣 | 色婷婷综合激情综在线播放 | 51国偷自产一区二区三区 | 日日碰狠狠丁香久燥 | 任你躁在线精品免费 | 国産精品久久久久久久 | 亚洲阿v天堂在线 | 少妇人妻偷人精品无码视频 | 97精品国产97久久久久久免费 | 国产精品成人av在线观看 | 久久久久亚洲精品男人的天堂 | 丰满诱人的人妻3 | 亚洲一区二区三区含羞草 | 国产精品久久久久久亚洲毛片 | 亚洲理论电影在线观看 | 午夜精品一区二区三区的区别 | 少妇无码一区二区二三区 | 99久久久无码国产精品免费 | 自拍偷自拍亚洲精品10p | 麻豆av传媒蜜桃天美传媒 | 97色伦图片97综合影院 | 久久久无码中文字幕久... | 国模大胆一区二区三区 | 久久人人97超碰a片精品 | 亚洲精品欧美二区三区中文字幕 | 一本久道久久综合婷婷五月 | 无遮挡啪啪摇乳动态图 | 永久黄网站色视频免费直播 | 永久黄网站色视频免费直播 | 精品久久久无码中文字幕 | 精品国偷自产在线视频 | 久久国产劲爆∧v内射 | 中文精品无码中文字幕无码专区 | 久久亚洲国产成人精品性色 | 99精品国产综合久久久久五月天 | 亚洲阿v天堂在线 | 久久久精品国产sm最大网站 | 中文字幕乱码人妻无码久久 | 欧美午夜特黄aaaaaa片 | 国产精品高潮呻吟av久久4虎 | 蜜桃av抽搐高潮一区二区 | 少妇性l交大片欧洲热妇乱xxx | 亚洲国产精品无码一区二区三区 | 无码人妻少妇伦在线电影 | 精品 日韩 国产 欧美 视频 | 精品国精品国产自在久国产87 | 日本乱人伦片中文三区 | 亚洲日韩乱码中文无码蜜桃臀网站 | 午夜精品久久久内射近拍高清 | 亚洲aⅴ无码成人网站国产app | 免费无码的av片在线观看 | 免费无码午夜福利片69 | 国产做国产爱免费视频 | 未满成年国产在线观看 | 色诱久久久久综合网ywww | 露脸叫床粗话东北少妇 | 狠狠cao日日穞夜夜穞av | 日日天日日夜日日摸 | 欧美老熟妇乱xxxxx | 欧美高清在线精品一区 | 亚洲爆乳无码专区 | 国产乱人无码伦av在线a | 性欧美牲交在线视频 | 国产精品第一区揄拍无码 | 激情五月综合色婷婷一区二区 | 激情综合激情五月俺也去 | 97人妻精品一区二区三区 | 丰满人妻一区二区三区免费视频 | 亚欧洲精品在线视频免费观看 | 欧美变态另类xxxx | 日韩精品久久久肉伦网站 | 欧美人与禽猛交狂配 | 色老头在线一区二区三区 | 无码纯肉视频在线观看 | 成 人 网 站国产免费观看 | 国产午夜无码精品免费看 | 亚洲人交乣女bbw | 99久久久国产精品无码免费 | 亚洲の无码国产の无码步美 | 超碰97人人做人人爱少妇 | 亚洲一区二区三区偷拍女厕 | 国产精品久久久久久亚洲毛片 | 国产熟妇另类久久久久 | 88国产精品欧美一区二区三区 | 欧美日韩色另类综合 | 少妇被黑人到高潮喷出白浆 | av无码电影一区二区三区 | 亚洲gv猛男gv无码男同 | 亚洲日本在线电影 | 综合激情五月综合激情五月激情1 | 无码人妻av免费一区二区三区 | 国产精品国产三级国产专播 | 午夜精品一区二区三区在线观看 | 水蜜桃色314在线观看 | 欧美35页视频在线观看 | 亲嘴扒胸摸屁股激烈网站 | 中文字幕日产无线码一区 | 国产av人人夜夜澡人人爽麻豆 | 欧美丰满熟妇xxxx | 日韩成人一区二区三区在线观看 | 久久人人爽人人爽人人片ⅴ | 老熟女重囗味hdxx69 | 无码免费一区二区三区 | 中文字幕av伊人av无码av | 精品乱子伦一区二区三区 | 亚洲成av人影院在线观看 | 麻豆av传媒蜜桃天美传媒 | 又大又黄又粗又爽的免费视频 | 99国产精品白浆在线观看免费 | 亚洲自偷自偷在线制服 | 澳门永久av免费网站 | 亚洲日本va午夜在线电影 | 亚洲乱亚洲乱妇50p | 久久婷婷五月综合色国产香蕉 | 亚洲理论电影在线观看 | 性欧美熟妇videofreesex | 美女毛片一区二区三区四区 | 国产97色在线 | 免 | 成人免费视频在线观看 | 亚洲日韩av片在线观看 | 国产精品久久久久9999小说 | 亚洲人成网站色7799 | 一区二区三区乱码在线 | 欧洲 | 国产一区二区三区精品视频 | 久久人妻内射无码一区三区 | 一本久道高清无码视频 | 国内综合精品午夜久久资源 | 午夜免费福利小电影 | 97久久超碰中文字幕 | 天堂а√在线中文在线 | 国产热a欧美热a在线视频 | 欧美激情内射喷水高潮 | 中国女人内谢69xxxxxa片 | 久久综合香蕉国产蜜臀av | 国产乱人无码伦av在线a | 99久久无码一区人妻 | 久久精品人人做人人综合试看 | 国产亚洲精品久久久久久国模美 | 国产精品人人妻人人爽 | 亚洲а∨天堂久久精品2021 | 久久久精品国产sm最大网站 | 人妻体内射精一区二区三四 | 国产免费观看黄av片 | 国产精品香蕉在线观看 | 色偷偷人人澡人人爽人人模 | 亚洲人成影院在线观看 | 日本va欧美va欧美va精品 | 国产精品久久国产精品99 | 装睡被陌生人摸出水好爽 | 欧美性猛交xxxx富婆 | av无码不卡在线观看免费 | 久久精品国产99久久6动漫 | 国产精品资源一区二区 | 大地资源中文第3页 | 国产精品美女久久久 | 亚洲精品一区二区三区婷婷月 | 亚洲欧洲无卡二区视頻 | 国产午夜福利100集发布 | 亚洲无人区一区二区三区 | 狂野欧美性猛xxxx乱大交 | 无码免费一区二区三区 | 亚洲精品久久久久久久久久久 | 国产精品亚洲专区无码不卡 | 国产三级久久久精品麻豆三级 | 国产精品自产拍在线观看 | 在线成人www免费观看视频 | 中文字幕中文有码在线 | 亚洲一区二区观看播放 | 国产精品国产自线拍免费软件 | 久久久久久av无码免费看大片 | 久久精品人妻少妇一区二区三区 | 5858s亚洲色大成网站www | 久久成人a毛片免费观看网站 | 偷窥村妇洗澡毛毛多 | 久久久久成人精品免费播放动漫 | 色综合久久中文娱乐网 | 亚洲国产成人a精品不卡在线 | 国产婷婷色一区二区三区在线 | 一本精品99久久精品77 | 国产suv精品一区二区五 | 中文字幕 亚洲精品 第1页 | 亚洲精品久久久久avwww潮水 | 国产成人无码专区 | 精品少妇爆乳无码av无码专区 | 亚洲欧美日韩成人高清在线一区 | 精品国产成人一区二区三区 | 欧美日韩人成综合在线播放 | 久久精品丝袜高跟鞋 | 欧美老人巨大xxxx做受 | 中文无码伦av中文字幕 | 乱人伦人妻中文字幕无码 | 午夜福利试看120秒体验区 | 久久亚洲国产成人精品性色 | 一本色道婷婷久久欧美 | 国产偷抇久久精品a片69 | 欧美日韩一区二区免费视频 | 乌克兰少妇xxxx做受 | 亚洲欧洲日本无在线码 | 熟妇激情内射com | 九九综合va免费看 | 久久综合久久自在自线精品自 | 成人试看120秒体验区 | 国产极品美女高潮无套在线观看 | 国产一区二区三区日韩精品 | 欧美 丝袜 自拍 制服 另类 | 中文字幕无码免费久久99 | 丰腴饱满的极品熟妇 | 亚洲成在人网站无码天堂 | 久久久久人妻一区精品色欧美 | 最近免费中文字幕中文高清百度 | 国产成人综合在线女婷五月99播放 | 撕开奶罩揉吮奶头视频 | 亚洲欧美日韩综合久久久 | 一本色道久久综合亚洲精品不卡 | 欧美黑人性暴力猛交喷水 | 色偷偷av老熟女 久久精品人妻少妇一区二区三区 | 欧美熟妇另类久久久久久多毛 | 无码毛片视频一区二区本码 | 亚洲男人av香蕉爽爽爽爽 | 国产亚洲精品久久久久久国模美 | 全球成人中文在线 | www成人国产高清内射 | 四虎国产精品一区二区 | 欧美野外疯狂做受xxxx高潮 | 激情综合激情五月俺也去 | 曰韩无码二三区中文字幕 | 国产精品免费大片 | 一区二区三区高清视频一 | 捆绑白丝粉色jk震动捧喷白浆 | 午夜精品久久久久久久久 | 国产精品成人av在线观看 | 久在线观看福利视频 | 亚洲欧洲日本综合aⅴ在线 | 中国大陆精品视频xxxx | 兔费看少妇性l交大片免费 | 国产亚洲精品久久久久久久 | 999久久久国产精品消防器材 | 国产真实夫妇视频 | 天堂无码人妻精品一区二区三区 | 九九在线中文字幕无码 | 无码人妻精品一区二区三区不卡 | 亚洲人亚洲人成电影网站色 | 国产成人综合美国十次 | 日本肉体xxxx裸交 | 国产午夜福利100集发布 | 国精品人妻无码一区二区三区蜜柚 | 国产极品视觉盛宴 | 少女韩国电视剧在线观看完整 | 亚洲精品成a人在线观看 | 国产成人综合色在线观看网站 | 久久天天躁狠狠躁夜夜免费观看 | 76少妇精品导航 | 亚洲精品www久久久 | 大地资源网第二页免费观看 | 性做久久久久久久久 | 亚洲日韩一区二区 | 综合人妻久久一区二区精品 | 欧美黑人巨大xxxxx | 欧美日韩人成综合在线播放 | 午夜丰满少妇性开放视频 | 亚洲熟女一区二区三区 | 无码人妻丰满熟妇区五十路百度 | 国产无av码在线观看 | 日本肉体xxxx裸交 | 荫蒂被男人添的好舒服爽免费视频 | 国产成人综合在线女婷五月99播放 | 熟女俱乐部五十路六十路av | 人人妻人人澡人人爽精品欧美 | 丰满肥臀大屁股熟妇激情视频 | 午夜精品一区二区三区的区别 | 久久99国产综合精品 | 国产精品人人爽人人做我的可爱 | 51国偷自产一区二区三区 | 国产网红无码精品视频 | 国产人妻精品一区二区三区 | 性色欲网站人妻丰满中文久久不卡 | 美女极度色诱视频国产 | 精品国产青草久久久久福利 | 国产成人综合色在线观看网站 | 欧美精品国产综合久久 | 2019午夜福利不卡片在线 | 人妻无码久久精品人妻 | 日本丰满熟妇videos | 亚洲成a人片在线观看日本 | 国产做国产爱免费视频 | 亚洲男人av天堂午夜在 | 欧美性黑人极品hd | 日韩无套无码精品 | 亚洲日韩乱码中文无码蜜桃臀网站 | 丰满护士巨好爽好大乳 | 欧洲熟妇色 欧美 | 免费乱码人妻系列无码专区 | 精品无码一区二区三区爱欲 | 亚洲色成人中文字幕网站 | 少妇厨房愉情理9仑片视频 | 丰满人妻翻云覆雨呻吟视频 | 日日麻批免费40分钟无码 | 亚洲成a人片在线观看无码 | 久9re热视频这里只有精品 | 97资源共享在线视频 | 亚洲国产欧美日韩精品一区二区三区 | 人妻aⅴ无码一区二区三区 | 国产成人午夜福利在线播放 | 97无码免费人妻超级碰碰夜夜 | 亚洲国产精品无码一区二区三区 | 日本www一道久久久免费榴莲 | 大肉大捧一进一出视频出来呀 | 香蕉久久久久久av成人 | 亚洲精品一区三区三区在线观看 | 欧美一区二区三区 | 天天av天天av天天透 | 青草青草久热国产精品 | 99久久人妻精品免费一区 | 国产精品久久久一区二区三区 | 国产超级va在线观看视频 | 天天躁日日躁狠狠躁免费麻豆 | 久久久久亚洲精品男人的天堂 | 国产偷国产偷精品高清尤物 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 爱做久久久久久 | 亚洲欧美国产精品专区久久 | 精品无人区无码乱码毛片国产 | 狠狠色欧美亚洲狠狠色www | 亚洲欧美日韩国产精品一区二区 | 亚洲七七久久桃花影院 | 久久久中文字幕日本无吗 | 99riav国产精品视频 | 天堂无码人妻精品一区二区三区 | 成人精品天堂一区二区三区 | 国产亚洲精品久久久久久大师 | 思思久久99热只有频精品66 | 色婷婷av一区二区三区之红樱桃 | 中文字幕 人妻熟女 | 国产热a欧美热a在线视频 | 国产莉萝无码av在线播放 | 久久综合激激的五月天 | 色噜噜亚洲男人的天堂 | 国产超碰人人爽人人做人人添 | 少妇的肉体aa片免费 | 亚洲日韩乱码中文无码蜜桃臀网站 | 色妞www精品免费视频 | 无遮挡国产高潮视频免费观看 | 18禁止看的免费污网站 | 亚洲爆乳精品无码一区二区三区 | 亚洲精品国产a久久久久久 | 久久zyz资源站无码中文动漫 | 久久综合网欧美色妞网 | 久久综合狠狠综合久久综合88 | 午夜性刺激在线视频免费 | 无码av岛国片在线播放 | www国产亚洲精品久久网站 | 亚洲精品国产a久久久久久 | 麻豆国产97在线 | 欧洲 | 亚洲精品美女久久久久久久 | 亚洲精品国产a久久久久久 | 天干天干啦夜天干天2017 | 亚洲男人av香蕉爽爽爽爽 | aa片在线观看视频在线播放 | 人妻有码中文字幕在线 | 欧美日韩一区二区三区自拍 | v一区无码内射国产 | 午夜免费福利小电影 | 水蜜桃亚洲一二三四在线 | 国产精品美女久久久久av爽李琼 | 国产人妻精品一区二区三区 | 超碰97人人射妻 | 天堂无码人妻精品一区二区三区 | 免费无码av一区二区 | 无码人妻丰满熟妇区五十路百度 | 强奷人妻日本中文字幕 | 小sao货水好多真紧h无码视频 | 亚洲熟熟妇xxxx | 国内综合精品午夜久久资源 | 正在播放老肥熟妇露脸 | 大乳丰满人妻中文字幕日本 | 性色欲网站人妻丰满中文久久不卡 | 日本xxxx色视频在线观看免费 | 在线a亚洲视频播放在线观看 | 免费男性肉肉影院 | 国色天香社区在线视频 | 国产激情一区二区三区 | 国产办公室秘书无码精品99 | 强伦人妻一区二区三区视频18 | 久久成人a毛片免费观看网站 | 亚洲中文字幕va福利 | 98国产精品综合一区二区三区 | 亚洲精品国产品国语在线观看 | 牛和人交xxxx欧美 | 色窝窝无码一区二区三区色欲 | 色综合久久中文娱乐网 | 国产成人无码午夜视频在线观看 | 国产无遮挡吃胸膜奶免费看 | 日日躁夜夜躁狠狠躁 | 捆绑白丝粉色jk震动捧喷白浆 | 国产欧美亚洲精品a | 99re在线播放 | 国产真实夫妇视频 | 国产精品第一国产精品 | 日日摸夜夜摸狠狠摸婷婷 | v一区无码内射国产 | 精品亚洲成av人在线观看 | 乱人伦人妻中文字幕无码 | 国产熟女一区二区三区四区五区 | 亚洲欧美日韩成人高清在线一区 | 日本va欧美va欧美va精品 | 成人免费视频一区二区 | 久久精品女人的天堂av | 国产莉萝无码av在线播放 | 国产成人午夜福利在线播放 | 精品厕所偷拍各类美女tp嘘嘘 | 国产香蕉尹人综合在线观看 | 无码精品人妻一区二区三区av | 亚洲高清偷拍一区二区三区 | 欧美激情一区二区三区成人 | 人妻人人添人妻人人爱 | 亚洲乱亚洲乱妇50p | 久久99精品国产.久久久久 | 十八禁真人啪啪免费网站 | 久久久久亚洲精品男人的天堂 | 国产乱码精品一品二品 | 亚洲国产精品久久久天堂 | 99久久人妻精品免费一区 | 永久免费精品精品永久-夜色 | 国产精品美女久久久网av | 久久精品女人的天堂av | 性色欲网站人妻丰满中文久久不卡 | 国内精品一区二区三区不卡 | 国精产品一品二品国精品69xx | 欧美猛少妇色xxxxx | 18精品久久久无码午夜福利 | 色窝窝无码一区二区三区色欲 | 三上悠亚人妻中文字幕在线 | 又色又爽又黄的美女裸体网站 | 婷婷五月综合缴情在线视频 | 樱花草在线播放免费中文 | 亚洲成av人片天堂网无码】 | 国产人妻人伦精品 | 亚洲の无码国产の无码影院 | 中文字幕亚洲情99在线 | 成人无码视频在线观看网站 | 国产在线一区二区三区四区五区 | 国产精品二区一区二区aⅴ污介绍 | 欧美亚洲日韩国产人成在线播放 | 亚洲小说春色综合另类 | 国产成人亚洲综合无码 | 国精品人妻无码一区二区三区蜜柚 | 久久久精品456亚洲影院 | 天天做天天爱天天爽综合网 | yw尤物av无码国产在线观看 | 高潮毛片无遮挡高清免费 | 性生交大片免费看女人按摩摩 | 欧美亚洲国产一区二区三区 | 性欧美熟妇videofreesex | 午夜嘿嘿嘿影院 | 澳门永久av免费网站 | 欧美色就是色 | 国产精品久久久午夜夜伦鲁鲁 | 初尝人妻少妇中文字幕 | 色欲av亚洲一区无码少妇 | 色综合久久久无码网中文 | 日本精品人妻无码77777 天堂一区人妻无码 | 久久精品国产99久久6动漫 | 亚洲一区二区三区香蕉 | 奇米影视7777久久精品人人爽 | 国产69精品久久久久app下载 | 中文字幕av日韩精品一区二区 | 国产亚洲欧美在线专区 | 欧洲熟妇精品视频 | 成熟人妻av无码专区 | 久精品国产欧美亚洲色aⅴ大片 | 国内揄拍国内精品少妇国语 | 亚洲а∨天堂久久精品2021 | 亚洲の无码国产の无码影院 | 国内少妇偷人精品视频 | 少妇性l交大片欧洲热妇乱xxx | 日日摸天天摸爽爽狠狠97 | 色婷婷久久一区二区三区麻豆 | 亚洲男人av香蕉爽爽爽爽 | 亚洲国产欧美国产综合一区 | 精品乱码久久久久久久 | 午夜丰满少妇性开放视频 | 欧美人妻一区二区三区 | 九九综合va免费看 | 一本久久伊人热热精品中文字幕 | 啦啦啦www在线观看免费视频 | 77777熟女视频在线观看 а天堂中文在线官网 | 亚洲s码欧洲m码国产av | 性色欲网站人妻丰满中文久久不卡 | 纯爱无遮挡h肉动漫在线播放 | 99久久久无码国产精品免费 | 天海翼激烈高潮到腰振不止 | 久热国产vs视频在线观看 | 欧美怡红院免费全部视频 | 亚洲国产综合无码一区 | 亚洲国产精品无码一区二区三区 | 人人妻人人澡人人爽欧美一区九九 | 欧美精品国产综合久久 | 亚洲熟熟妇xxxx | 久久国语露脸国产精品电影 | 欧美日韩一区二区免费视频 | 国产婷婷色一区二区三区在线 | 日韩精品无码一本二本三本色 | 国产精品va在线观看无码 | 亚洲一区二区三区播放 | 黑人粗大猛烈进出高潮视频 | 亚洲理论电影在线观看 | 国产精品久久久久9999小说 | 76少妇精品导航 | 东京无码熟妇人妻av在线网址 | 成在人线av无码免观看麻豆 | 亚洲爆乳无码专区 | 日本熟妇乱子伦xxxx | 性色av无码免费一区二区三区 | 国产乱人伦偷精品视频 | 中文字幕 人妻熟女 | 青草青草久热国产精品 | 狂野欧美性猛交免费视频 | 人人妻人人藻人人爽欧美一区 | 娇妻被黑人粗大高潮白浆 | 成人性做爰aaa片免费看 | 7777奇米四色成人眼影 | 亚洲欧美综合区丁香五月小说 | 午夜男女很黄的视频 | 内射老妇bbwx0c0ck | 天堂亚洲2017在线观看 | 日本一卡2卡3卡4卡无卡免费网站 国产一区二区三区影院 | 国产乱人伦app精品久久 国产在线无码精品电影网 国产国产精品人在线视 | 国产激情无码一区二区 | 天天躁日日躁狠狠躁免费麻豆 | 给我免费的视频在线观看 | 东京一本一道一二三区 | 欧洲精品码一区二区三区免费看 | 久久久久久久久888 | 日本护士xxxxhd少妇 | 蜜臀aⅴ国产精品久久久国产老师 | 国产精品无码mv在线观看 | 国产av无码专区亚洲awww | 国产精品久久久久无码av色戒 | 精品亚洲韩国一区二区三区 | 2019nv天堂香蕉在线观看 | 久久天天躁狠狠躁夜夜免费观看 | 中文字幕乱码人妻二区三区 | 欧美熟妇另类久久久久久多毛 | 欧美国产日产一区二区 | 网友自拍区视频精品 | 亚洲欧美综合区丁香五月小说 | 国产激情精品一区二区三区 | 超碰97人人射妻 | av在线亚洲欧洲日产一区二区 | 色偷偷av老熟女 久久精品人妻少妇一区二区三区 | 亚洲一区二区三区四区 | 色欲久久久天天天综合网精品 | 国语自产偷拍精品视频偷 | 天堂亚洲2017在线观看 | 水蜜桃亚洲一二三四在线 | 亚洲中文字幕无码一久久区 | 成人无码视频免费播放 | 欧美激情综合亚洲一二区 | 久久国内精品自在自线 | 天天做天天爱天天爽综合网 | 人妻中文无码久热丝袜 | 精品偷拍一区二区三区在线看 | 久久www免费人成人片 | 无码毛片视频一区二区本码 | 久久精品中文字幕大胸 | 国产乱人伦偷精品视频 | 18精品久久久无码午夜福利 | 天堂一区人妻无码 | 国产偷抇久久精品a片69 | 扒开双腿疯狂进出爽爽爽视频 | 国产亲子乱弄免费视频 | 色婷婷综合激情综在线播放 | 在线а√天堂中文官网 | 国产亚洲视频中文字幕97精品 | 动漫av一区二区在线观看 | 亚洲国产午夜精品理论片 | 精品一二三区久久aaa片 | 丰满少妇高潮惨叫视频 | 久久精品人人做人人综合试看 | 亚洲精品欧美二区三区中文字幕 | 女人被男人躁得好爽免费视频 | 亚洲天堂2017无码中文 | 国产激情精品一区二区三区 | 麻豆精品国产精华精华液好用吗 | 99久久久国产精品无码免费 | 免费观看又污又黄的网站 | 日韩av无码一区二区三区 | 成人试看120秒体验区 | 狂野欧美性猛交免费视频 | 人人妻人人澡人人爽欧美一区九九 | 欧美自拍另类欧美综合图片区 | 久久五月精品中文字幕 | 国产成人无码a区在线观看视频app | 国产手机在线αⅴ片无码观看 | 性色av无码免费一区二区三区 | 人人澡人人妻人人爽人人蜜桃 | 男女下面进入的视频免费午夜 | 成人综合网亚洲伊人 | 久久精品国产一区二区三区 | 99久久精品日本一区二区免费 | 国产精品毛片一区二区 | 日欧一片内射va在线影院 | 性做久久久久久久久 | 亚洲の无码国产の无码影院 | 男女爱爱好爽视频免费看 | 亚洲中文字幕无码一久久区 | 天天拍夜夜添久久精品 | 老子影院午夜精品无码 | 丰满人妻翻云覆雨呻吟视频 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 国产精品亚洲综合色区韩国 | 台湾无码一区二区 | 性欧美videos高清精品 | 亚洲 a v无 码免 费 成 人 a v | 亚洲区小说区激情区图片区 | 一区二区三区高清视频一 | 白嫩日本少妇做爰 | 亚洲 另类 在线 欧美 制服 | 人妻中文无码久热丝袜 | 欧美丰满老熟妇xxxxx性 | 99久久久国产精品无码免费 | 无码人妻少妇伦在线电影 | 福利一区二区三区视频在线观看 | 亚洲成av人综合在线观看 | 99国产欧美久久久精品 | 亚洲精品一区三区三区在线观看 | 精品久久久无码人妻字幂 | 久久人妻内射无码一区三区 | 欧美丰满老熟妇xxxxx性 | 国产一区二区三区影院 | 少妇厨房愉情理9仑片视频 | 黑人巨大精品欧美一区二区 | 亚洲呦女专区 | 久久午夜无码鲁丝片秋霞 | 国产精品久久久一区二区三区 | 丝袜 中出 制服 人妻 美腿 | 久久精品国产日本波多野结衣 | 国产精品久久国产三级国 | 特级做a爰片毛片免费69 | 成人免费视频在线观看 | 妺妺窝人体色www婷婷 | 国产精品久久国产精品99 | 无码av中文字幕免费放 | 欧美日韩一区二区综合 | 国产精品国产自线拍免费软件 | 欧美自拍另类欧美综合图片区 | 国产亚洲精品久久久久久久 | 亚洲色欲色欲欲www在线 | 国产激情无码一区二区 | 亚洲国产精品一区二区美利坚 | 国产超级va在线观看视频 | 久久精品无码一区二区三区 | 久久亚洲中文字幕无码 | 2019nv天堂香蕉在线观看 | 在线亚洲高清揄拍自拍一品区 | 免费看男女做好爽好硬视频 | 亚洲欧美日韩国产精品一区二区 | 18禁止看的免费污网站 | 亚洲日韩精品欧美一区二区 | 高潮毛片无遮挡高清免费视频 | 又大又硬又黄的免费视频 | 成人无码视频在线观看网站 | 成人三级无码视频在线观看 | 老熟妇仑乱视频一区二区 | 精品水蜜桃久久久久久久 | 秋霞成人午夜鲁丝一区二区三区 | 欧美 亚洲 国产 另类 | 又湿又紧又大又爽a视频国产 | 性欧美大战久久久久久久 | 少妇高潮喷潮久久久影院 | 爱做久久久久久 | 精品国精品国产自在久国产87 | 天堂а√在线地址中文在线 | 成人一在线视频日韩国产 | 亚洲天堂2017无码中文 | 国产美女极度色诱视频www | 又大又硬又黄的免费视频 | 日韩精品久久久肉伦网站 | 老司机亚洲精品影院无码 | 波多野结衣一区二区三区av免费 | 国产成人综合在线女婷五月99播放 | 人人爽人人爽人人片av亚洲 | 人妻少妇精品无码专区动漫 | 欧美丰满少妇xxxx性 | 亚洲色大成网站www | 六十路熟妇乱子伦 | 久久综合狠狠综合久久综合88 | 久久国产精品萌白酱免费 | 久久久成人毛片无码 | 人人妻人人澡人人爽欧美一区九九 | 黑人玩弄人妻中文在线 | 88国产精品欧美一区二区三区 | 亚洲gv猛男gv无码男同 | 久久精品国产大片免费观看 | 亚洲色偷偷男人的天堂 | 一个人看的www免费视频在线观看 | 无遮挡国产高潮视频免费观看 | 亚洲一区二区三区无码久久 | 国产成人综合色在线观看网站 | 中文精品无码中文字幕无码专区 | 国产精品久久久久久久9999 | 娇妻被黑人粗大高潮白浆 | 日本精品人妻无码77777 天堂一区人妻无码 | 欧美老妇交乱视频在线观看 | 国产美女精品一区二区三区 | 久久综合久久自在自线精品自 | 欧美丰满少妇xxxx性 | 精品久久久久久亚洲精品 | 国产精品美女久久久 | 桃花色综合影院 | 国内综合精品午夜久久资源 | 日韩精品久久久肉伦网站 | 日本xxxx色视频在线观看免费 | 中国大陆精品视频xxxx | 成在人线av无码免费 | 中文精品无码中文字幕无码专区 | 日韩精品无码一本二本三本色 | 精品日本一区二区三区在线观看 | 未满小14洗澡无码视频网站 | 性做久久久久久久久 | 午夜理论片yy44880影院 | 色欲av亚洲一区无码少妇 | 国产真实伦对白全集 | 欧美日本精品一区二区三区 | 网友自拍区视频精品 | 国产精品毛多多水多 | 爆乳一区二区三区无码 | 2019nv天堂香蕉在线观看 | 黄网在线观看免费网站 | 欧美日韩视频无码一区二区三 | 麻豆国产人妻欲求不满谁演的 | 欧美xxxxx精品 | 影音先锋中文字幕无码 | 97精品人妻一区二区三区香蕉 | 日日摸日日碰夜夜爽av | 日日躁夜夜躁狠狠躁 | 国产香蕉尹人综合在线观看 | 欧美肥老太牲交大战 | 国内揄拍国内精品人妻 | 日本精品少妇一区二区三区 | 国产在线精品一区二区三区直播 | 中文字幕无码乱人伦 | 一个人看的视频www在线 | 老熟妇仑乱视频一区二区 | 国产成人无码一二三区视频 | 无码av最新清无码专区吞精 | 国产熟妇另类久久久久 | 精品久久久久久人妻无码中文字幕 | 99久久久无码国产aaa精品 | 精品无人区无码乱码毛片国产 | 日本精品少妇一区二区三区 | 亚洲精品国产第一综合99久久 | 东京无码熟妇人妻av在线网址 | 亚洲最大成人网站 | 高潮毛片无遮挡高清免费视频 | 国产 浪潮av性色四虎 | 精品成人av一区二区三区 | 夜精品a片一区二区三区无码白浆 | 国产成人精品视频ⅴa片软件竹菊 | 欧美精品免费观看二区 | 亚洲国产精品一区二区美利坚 | 国内精品久久久久久中文字幕 | 中文字幕人成乱码熟女app | 国产sm调教视频在线观看 | 午夜无码人妻av大片色欲 | 精品aⅴ一区二区三区 | 中国女人内谢69xxxx | 久久精品女人天堂av免费观看 | 国产亚洲精品久久久ai换 | 小sao货水好多真紧h无码视频 | 久久综合狠狠综合久久综合88 | 扒开双腿吃奶呻吟做受视频 | 高清不卡一区二区三区 | v一区无码内射国产 | 欧美高清在线精品一区 | 亚拍精品一区二区三区探花 | 久久亚洲国产成人精品性色 | 性做久久久久久久免费看 | 国产性生交xxxxx无码 | 欧美黑人乱大交 | 日韩精品久久久肉伦网站 | 成人试看120秒体验区 | 人人爽人人澡人人高潮 | 成人无码精品1区2区3区免费看 | 亚洲日韩中文字幕在线播放 | 97久久国产亚洲精品超碰热 | 国产艳妇av在线观看果冻传媒 | 国产麻豆精品精东影业av网站 | 四虎国产精品免费久久 | 日本一区二区三区免费高清 | 日本精品人妻无码77777 天堂一区人妻无码 | 性欧美疯狂xxxxbbbb | 天天爽夜夜爽夜夜爽 | 国产 精品 自在自线 | 欧美性猛交内射兽交老熟妇 | 在线观看欧美一区二区三区 | 性啪啪chinese东北女人 | 亚洲国产成人av在线观看 | 最新国产乱人伦偷精品免费网站 | 青青草原综合久久大伊人精品 | 欧美变态另类xxxx | 99er热精品视频 | 国产成人无码a区在线观看视频app | 国产精品久久国产精品99 | 色欲人妻aaaaaaa无码 | 夜夜夜高潮夜夜爽夜夜爰爰 | 性欧美大战久久久久久久 | 在线 国产 欧美 亚洲 天堂 | 永久黄网站色视频免费直播 | 久久国产精品精品国产色婷婷 | 欧美亚洲国产一区二区三区 | 成人精品天堂一区二区三区 | 久久精品99久久香蕉国产色戒 | 欧美兽交xxxx×视频 | 色狠狠av一区二区三区 | 两性色午夜免费视频 | 国产精品18久久久久久麻辣 | 亚洲成a人一区二区三区 | 亚洲成熟女人毛毛耸耸多 | 未满小14洗澡无码视频网站 | 搡女人真爽免费视频大全 | 久久综合给合久久狠狠狠97色 | 亚洲中文无码av永久不收费 | 俺去俺来也www色官网 | 精品无码成人片一区二区98 | 亚洲伊人久久精品影院 | 国产免费观看黄av片 | 18禁止看的免费污网站 | 免费网站看v片在线18禁无码 | 亚洲色欲色欲欲www在线 | 亚洲高清偷拍一区二区三区 | 日日夜夜撸啊撸 | 亚欧洲精品在线视频免费观看 | 无码人妻av免费一区二区三区 | 亚洲成a人片在线观看无码3d | 国产精品亚洲а∨无码播放麻豆 | 97夜夜澡人人爽人人喊中国片 | 国产亚洲精品久久久久久 | 免费观看又污又黄的网站 | 色综合久久久无码网中文 | 国产超级va在线观看视频 | 天堂а√在线中文在线 | 亚洲一区二区三区国产精华液 | 正在播放老肥熟妇露脸 | 2020久久香蕉国产线看观看 | а√资源新版在线天堂 | 水蜜桃av无码 | 少妇人妻偷人精品无码视频 | 丰满少妇熟乱xxxxx视频 | 四虎影视成人永久免费观看视频 | 国产特级毛片aaaaaaa高清 | 少妇无码av无码专区在线观看 | 四十如虎的丰满熟妇啪啪 | 国产成人综合在线女婷五月99播放 | 亚洲精品午夜无码电影网 | 亚洲成av人片天堂网无码】 | 亚洲精品鲁一鲁一区二区三区 | 一本久道久久综合婷婷五月 | 日韩人妻无码一区二区三区久久99 | 成年美女黄网站色大免费视频 | 窝窝午夜理论片影院 | 熟妇女人妻丰满少妇中文字幕 | 亚洲中文字幕在线无码一区二区 | 成人片黄网站色大片免费观看 | 亚洲а∨天堂久久精品2021 | 国产亚洲日韩欧美另类第八页 | 亚洲人亚洲人成电影网站色 | 超碰97人人射妻 | 成人性做爰aaa片免费看 | 图片区 小说区 区 亚洲五月 | 国内精品九九久久久精品 | 精品久久久久久人妻无码中文字幕 | 色欲人妻aaaaaaa无码 | 亚洲欧美色中文字幕在线 | 性欧美牲交在线视频 | 国产极品美女高潮无套在线观看 | 成人动漫在线观看 | 亚洲精品国产第一综合99久久 | 东北女人啪啪对白 | 人人爽人人澡人人高潮 | 2019nv天堂香蕉在线观看 | 国产亚洲精品久久久久久 | 久久综合色之久久综合 | 一本久道久久综合婷婷五月 | 久久精品一区二区三区四区 | 国产激情无码一区二区 | 男女下面进入的视频免费午夜 | 亚洲国产欧美日韩精品一区二区三区 | 久久精品无码一区二区三区 | 好男人www社区 | 国产性生交xxxxx无码 | 婷婷综合久久中文字幕蜜桃三电影 | 蜜臀av无码人妻精品 | 67194成是人免费无码 | 99精品国产综合久久久久五月天 | 色欲久久久天天天综合网精品 | 欧美激情综合亚洲一二区 | 无套内谢的新婚少妇国语播放 | 中文无码成人免费视频在线观看 | 亚洲另类伦春色综合小说 | 亚洲中文无码av永久不收费 | 亚洲欧美中文字幕5发布 | 免费观看又污又黄的网站 | 午夜无码人妻av大片色欲 | 99视频精品全部免费免费观看 | 成人无码影片精品久久久 | 日日碰狠狠躁久久躁蜜桃 | av在线亚洲欧洲日产一区二区 | 色一情一乱一伦一视频免费看 | 精品夜夜澡人妻无码av蜜桃 | 成熟妇人a片免费看网站 | 扒开双腿疯狂进出爽爽爽视频 | 内射白嫩少妇超碰 | 久久无码中文字幕免费影院蜜桃 | 人人妻人人澡人人爽欧美一区九九 | 国产亚洲美女精品久久久2020 | 日本大香伊一区二区三区 | 鲁一鲁av2019在线 | 99久久精品日本一区二区免费 | 精品人人妻人人澡人人爽人人 | 欧美 日韩 人妻 高清 中文 | 中文字幕av日韩精品一区二区 | 亚洲爆乳精品无码一区二区三区 | 中文字幕乱妇无码av在线 | 精品无码av一区二区三区 | 欧美 亚洲 国产 另类 | 久久人人97超碰a片精品 | 国产香蕉97碰碰久久人人 | 亚洲熟妇色xxxxx欧美老妇 | 亚欧洲精品在线视频免费观看 | 日本又色又爽又黄的a片18禁 | 蜜桃视频插满18在线观看 | 亚洲国产高清在线观看视频 | 樱花草在线社区www | 国产精品久久久久久久影院 | 成人试看120秒体验区 | 亚洲国产精华液网站w | 国产69精品久久久久app下载 | 人妻夜夜爽天天爽三区 | 久久午夜无码鲁丝片午夜精品 | a在线观看免费网站大全 | 欧美肥老太牲交大战 | 国产在线精品一区二区高清不卡 | 婷婷五月综合激情中文字幕 | 亚洲人成人无码网www国产 | 久久国产自偷自偷免费一区调 | 亚洲中文字幕成人无码 | 亚洲一区二区三区偷拍女厕 | 成人亚洲精品久久久久软件 | 成人欧美一区二区三区黑人 | 成年美女黄网站色大免费全看 | 波多野结衣av一区二区全免费观看 | 国产成人精品无码播放 | 亚洲色大成网站www | 两性色午夜视频免费播放 | 强开小婷嫩苞又嫩又紧视频 | 奇米综合四色77777久久 东京无码熟妇人妻av在线网址 | 欧美日韩人成综合在线播放 | 久久人人爽人人人人片 | 日本大香伊一区二区三区 | 天天拍夜夜添久久精品 | 中文久久乱码一区二区 | 精品人妻人人做人人爽夜夜爽 | 日韩人妻无码中文字幕视频 | 欧美大屁股xxxxhd黑色 | 中文字幕久久久久人妻 | 国产9 9在线 | 中文 | 窝窝午夜理论片影院 | 性生交大片免费看l | 少妇被粗大的猛进出69影院 | 亚洲精品综合一区二区三区在线 | 国产真实乱对白精彩久久 | 亚洲 另类 在线 欧美 制服 | 亚洲色偷偷偷综合网 | 久久99精品久久久久久动态图 | 狂野欧美性猛交免费视频 | 亚洲精品鲁一鲁一区二区三区 | 国产综合久久久久鬼色 | 国产人妻精品午夜福利免费 | 爆乳一区二区三区无码 | 欧美成人家庭影院 | 国产激情精品一区二区三区 | 久久久久99精品成人片 | 久9re热视频这里只有精品 | 色偷偷av老熟女 久久精品人妻少妇一区二区三区 | 成 人 网 站国产免费观看 | 色狠狠av一区二区三区 | 久青草影院在线观看国产 | 久久久久久久久蜜桃 | 亚无码乱人伦一区二区 | 无码中文字幕色专区 |