3atv精品不卡视频,97人人超碰国产精品最新,中文字幕av一区二区三区人妻少妇,久久久精品波多野结衣,日韩一区二区三区精品

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

An overview of gradient descent optimization algorithms

發布時間:2025/3/21 编程问答 22 豆豆
生活随笔 收集整理的這篇文章主要介紹了 An overview of gradient descent optimization algorithms 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

轉載自:http://sebastianruder.com/optimizing-gradient-descent/

梯度下降優化及其各種變體。1.隨機梯度下降(SGD) 2.小批量梯度下降(mini-batch)3.最優點附近加速且穩定的動量法(Momentum)4.在谷歌毛臉中也使用的自適應學習率AdaGrad 5.克服AdaGrad梯度消失的RMSprop和AdaDelta。S.Ruder

Table of contents:

  • Gradient descent variants
    • Batch gradient descent
    • Stochastic gradient descent
    • Mini-batch gradient descent
  • Challenges
  • Gradient descent optimization algorithms
    • Momentum
    • Nesterov accelerated gradient
    • Adagrad
    • Adadelta
    • RMSprop
    • Adam
    • Visualization of algorithms
    • Which optimizer to choose?
  • Parallelizing and distributing SGD
    • Hogwild!
    • Downpour SGD
    • Delay-tolerant Algorithms for SGD
    • TensorFlow
    • Elastic Averaging SGD
  • Additional strategies for optimizing SGD
    • Shuffling and Curriculum Learning
    • Batch normalization
    • Early Stopping
    • Gradient noise
  • Conclusion
  • References

Gradient descent is one of the most popular algorithms to perform optimization and by far the most common way to optimize neural networks. At the same time, every state-of-the-art Deep Learning library contains implementations of various algorithms to optimize gradient descent (e.g.?lasagne's,?caffe's, and?keras'documentation). These algorithms, however, are often used as black-box optimizers, as practical explanations of their strengths and weaknesses are hard to come by.

This blog post aims at providing you with intuitions towards the behaviour of different algorithms for optimizing gradient descent that will help you put them to use. We are first going to look at the different variants of gradient descent. We will then briefly summarize challenges during training. Subsequently, we will introduce the most common optimization algorithms by showing their motivation to resolve these challenges and how this leads to the derivation of their update rules. We will also take a short look at algorithms and architectures to optimize gradient descent in a parallel and distributed setting. Finally, we will consider additional strategies that are helpful for optimizing gradient descent.

Gradient descent is a way to minimize an objective function?parameterized by a model's parameters?[Math Processing Error]?by updating the parameters in the opposite direction of the gradient of the objective function?[Math Processing Error]?w.r.t. to the parameters. The learning rate?[Math Processing Error]?determines the size of the steps we take to reach a (local) minimum. In other words, we follow the direction of the slope of the surface created by the objective function downhill until we reach a valley. If you are unfamiliar with gradient descent, you can find a good introduction on optimizing neural networks?here.

?Gradient descent variants

There are three variants of gradient descent, which differ in how much data we use to compute the gradient of the objective function. Depending on the amount of data, we make a trade-off between the accuracy of the parameter update and the time it takes to perform an update.

Batch gradient descent

Vanilla gradient descent, aka batch gradient descent, computes the gradient of the cost function w.r.t. to the parameters?[Math Processing Error]?for the entire training dataset:

[Math Processing Error].

As we need to calculate the gradients for the whole dataset to perform just?one?update, batch gradient descent can be very slow and is intractable for datasets that don't fit in memory. Batch gradient descent also doesn't allow us to update our model?online, i.e. with new examples on-the-fly.

In code, batch gradient descent looks something like this:

for i in range(nb_epochs):params_grad = evaluate_gradient(loss_function, data, params)params = params - learning_rate * params_grad

For a pre-defined number of epochs, we first compute the gradient vector?weights_grad?of the loss function for the whole dataset w.r.t. our parameter vector?params. Note that state-of-the-art deep learning libraries provide automatic differentiation that efficiently computes the gradient w.r.t. some parameters. If you derive the gradients yourself, then gradient checking is a good idea. (See?here?for some great tips on how to check gradients properly.)

We then update our parameters in the direction of the gradients with the learning rate determining how big of an update we perform. Batch gradient descent is guaranteed to converge to the global minimum for convex error surfaces and to a local minimum for non-convex surfaces.

Stochastic gradient descent

Stochastic gradient descent (SGD) in contrast performs a parameter update for?each?training example?[Math Processing Error]?and label?[Math Processing Error]:

[Math Processing Error].

Batch gradient descent performs redundant computations for large datasets, as it recomputes gradients for similar examples before each parameter update. SGD does away with this redundancy by performing one update at a time. It is therefore usually much faster and can also be used to learn online.?
SGD performs frequent updates with a high variance that cause the objective function to fluctuate heavily as in Image 1.

Image 1: SGD fluctuation (Source:? Wikipedia)

While batch gradient descent converges to the minimum of the basin the parameters are placed in, SGD's fluctuation, on the one hand, enables it to jump to new and potentially better local minima. On the other hand, this ultimately complicates convergence to the exact minimum, as SGD will keep overshooting. However, it has been shown that when we slowly decrease the learning rate, SGD shows the same convergence behaviour as batch gradient descent, almost certainly converging to a local or the global minimum for non-convex and convex optimization respectively.?
Its code fragment simply adds a loop over the training examples and evaluates the gradient w.r.t. each example. Note that we shuffle the training data at every epoch as explained in?this section.

for i in range(nb_epochs):np.random.shuffle(data)for example in data:params_grad = evaluate_gradient(loss_function, example, params)params = params - learning_rate * params_grad

Mini-batch gradient descent

Mini-batch gradient descent finally takes the best of both worlds and performs an update for every mini-batch of?[Math Processing Error]?training examples:

[Math Processing Error].

This way, it?a)?reduces the variance of the parameter updates, which can lead to more stable convergence; and?b)?can make use of highly optimized matrix optimizations common to state-of-the-art deep learning libraries that make computing the gradient w.r.t. a mini-batch very efficient. Common mini-batch sizes range between 50 and 256, but can vary for different applications. Mini-batch gradient descent is typically the algorithm of choice when training a neural network and the term SGD usually is employed also when mini-batches are used. Note: In modifications of SGD in the rest of this post, we leave out the parameters?[Math Processing Error]?for simplicity.

In code, instead of iterating over examples, we now iterate over mini-batches of size 50:

for i in range(nb_epochs):np.random.shuffle(data)for batch in get_batches(data, batch_size=50):params_grad = evaluate_gradient(loss_function, batch, params)params = params - learning_rate * params_grad

Challenges

Vanilla mini-batch gradient descent, however, does not guarantee good convergence, but offers a few challenges that need to be addressed:

  • Choosing a proper learning rate can be difficult. A learning rate that is too small leads to painfully slow convergence, while a learning rate that is too large can hinder convergence and cause the loss function to fluctuate around the minimum or even to diverge.

  • Learning rate schedules [11] try to adjust the learning rate during training by e.g. annealing, i.e. reducing the learning rate according to a pre-defined schedule or when the change in objective between epochs falls below a threshold. These schedules and thresholds, however, have to be defined in advance and are thus unable to adapt to a dataset's characteristics [10].

  • Additionally, the same learning rate applies to all parameter updates. If our data is sparse and our features have very different frequencies, we might not want to update all of them to the same extent, but perform a larger update for rarely occurring features.

  • Another key challenge of minimizing highly non-convex error functions common for neural networks is avoiding getting trapped in their numerous suboptimal local minima. Dauphin et al. [19] argue that the difficulty arises in fact not from local minima but from saddle points, i.e. points where one dimension slopes up and another slopes down. These saddle points are usually surrounded by a plateau of the same error, which makes it notoriously hard for SGD to escape, as the gradient is close to zero in all dimensions.

Gradient descent optimization algorithms

In the following, we will outline some algorithms that are widely used by the deep learning community to deal with the aforementioned challenges. We will not discuss algorithms that are infeasible to compute in practice for high-dimensional data sets, e.g. second-order methods such as?Newton's method.

Momentum

SGD has trouble navigating ravines, i.e. areas where the surface curves much more steeply in one dimension than in another [1], which are common around local optima. In these scenarios, SGD oscillates across the slopes of the ravine while only making hesitant progress along the bottom towards the local optimum as in Image 2.

Image 2: SGD without momentum Image 3: SGD with momentum

Momentum [2] is a method that helps accelerate SGD in the relevant direction and dampens oscillations as can be seen in Image 3. It does this by adding a fraction?[Math Processing Error]?of the update vector of the past time step to the current update vector:

[Math Processing Error].

[Math Processing Error].

Note: Some implementations exchange the signs in the equations. The momentum term?[Math Processing Error]?is usually set to 0.9 or a similar value.

Essentially, when using momentum, we push a ball down a hill. The ball accumulates momentum as it rolls downhill, becoming faster and faster on the way (until it reaches its terminal velocity if there is air resistance, i.e.?[Math Processing Error]). The same thing happens to our parameter updates: The momentum term increases for dimensions whose gradients point in the same directions and reduces updates for dimensions whose gradients change directions. As a result, we gain faster convergence and reduced oscillation.

Nesterov accelerated gradient

However, a ball that rolls down a hill, blindly following the slope, is highly unsatisfactory. We'd like to have a smarter ball, a ball that has a notion of where it is going so that it knows to slow down before the hill slopes up again.

Nesterov accelerated gradient (NAG) [7] is a way to give our momentum term this kind of prescience. We know that we will use our momentum term?[Math Processing Error]?to move the parameters?[Math Processing Error]. Computing?[Math Processing Error]?thus gives us an approximation of the next position of the parameters (the gradient is missing for the full update), a rough idea where our parameters are going to be. We can now effectively look ahead by calculating the gradient not w.r.t. to our current parameters?[Math Processing Error]?but w.r.t. the approximate future position of our parameters:

[Math Processing Error].

[Math Processing Error].

Again, we set the momentum term?[Math Processing Error]?to a value of around 0.9. While Momentum first computes the current gradient (small blue vector in Image 4) and then takes a big jump in the direction of the updated accumulated gradient (big blue vector), NAG first makes a big jump in the direction of the previous accumulated gradient (brown vector), measures the gradient and then makes a correction (green vector). This anticipatory update prevents us from going too fast and results in increased responsiveness, which has significantly increased the performance of RNNs on a number of tasks [8].

Image 4: Nesterov update (Source:? G. Hinton's lecture 6c)

Refer to?here?for another explanation about the intuitions behind NAG, while Ilya Sutskever gives a more detailed overview in his PhD thesis [9].

Now that we are able to adapt our updates to the slope of our error function and speed up SGD in turn, we would also like to adapt our updates to each individual parameter to perform larger or smaller updates depending on their importance.

Adagrad

Adagrad [3] is an algorithm for gradient-based optimization that does just this: It adapts the learning rate to the parameters, performing larger updates for infrequent and smaller updates for frequent parameters. For this reason, it is well-suited for dealing with sparse data. Dean et al. [4] have found that Adagrad greatly improved the robustness of SGD and used it for training large-scale neural nets at Google, which -- among other things -- learned to?recognize cats in Youtube videos. Moreover, Pennington et al. [5] used Adagrad to train GloVe word embeddings, as infrequent words require much larger updates than frequent ones.

Previously, we performed an update for all parameters?[Math Processing Error]?at once as every parameter[Math Processing Error]?used the same learning rate?[Math Processing Error]. As Adagrad uses a different learning rate for every parameter?[Math Processing Error]?at every time step?[Math Processing Error], we first show Adagrad's per-parameter update, which we then vectorize. For brevity, we set?[Math Processing Error]to be the gradient of the objective function w.r.t. to the parameter?[Math Processing Error]?at time step?[Math Processing Error]:

[Math Processing Error].

The SGD update for every parameter?[Math Processing Error]?at each time step?[Math Processing Error]?then becomes:

[Math Processing Error].

In its update rule, Adagrad modifies the general learning rate?[Math Processing Error]?at each time step?[Math Processing Error]?for every parameter?[Math Processing Error]?based on the past gradients that have been computed for?[Math Processing Error]:

[Math Processing Error].

[Math Processing Error]?here is a diagonal matrix where each diagonal element?[Math Processing Error]?is the sum of the squares of the gradients w.r.t.?[Math Processing Error]?up to time step?[Math Processing Error]?24, while?[Math Processing Error]?is a smoothing term that avoids division by zero (usually on the order of?[Math Processing Error]). Interestingly, without the square root operation, the algorithm performs much worse.

As?[Math Processing Error]?contains the sum of the squares of the past gradients w.r.t. to all parameters?[Math Processing Error]?along its diagonal, we can now vectorize our implementation by performing an element-wise matrix-vector multiplication?[Math Processing Error]?between?[Math Processing Error]?and?[Math Processing Error]:

[Math Processing Error].

One of Adagrad's main benefits is that it eliminates the need to manually tune the learning rate. Most implementations use a default value of 0.01 and leave it at that.

Adagrad's main weakness is its accumulation of the squared gradients in the denominator: Since every added term is positive, the accumulated sum keeps growing during training. This in turn causes the learning rate to shrink and eventually become infinitesimally small, at which point the algorithm is no longer able to acquire additional knowledge. The following algorithms aim to resolve this flaw.

Adadelta

Adadelta [6] is an extension of Adagrad that seeks to reduce its aggressive, monotonically decreasing learning rate. Instead of accumulating all past squared gradients, Adadelta restricts the window of accumulated past gradients to some fixed size?[Math Processing Error].

Instead of inefficiently storing?[Math Processing Error]?previous squared gradients, the sum of gradients is recursively defined as a decaying average of all past squared gradients. The running average?[Math Processing Error]?at time step?[Math Processing Error]?then depends (as a fraction?[Math Processing Error]similarly to the Momentum term) only on the previous average and the current gradient:

[Math Processing Error].

We set?[Math Processing Error]?to a similar value as the momentum term, around 0.9. For clarity, we now rewrite our vanilla SGD update in terms of the parameter update vector?[Math Processing Error]:

[Math Processing Error].

[Math Processing Error].

The parameter update vector of Adagrad that we derived previously thus takes the form:

[Math Processing Error].

We now simply replace the diagonal matrix?[Math Processing Error]?with the decaying average over past squared gradients?[Math Processing Error]:

[Math Processing Error].

As the denominator is just the root mean squared (RMS) error criterion of the gradient, we can replace it with the criterion short-hand:

[Math Processing Error].

The authors note that the units in this update (as well as in SGD, Momentum, or Adagrad) do not match, i.e. the update should have the same hypothetical units as the parameter. To realize this, they first define another exponentially decaying average, this time not of squared gradients but of squared parameter updates:

[Math Processing Error].

The root mean squared error of parameter updates is thus:

[Math Processing Error].

Replacing the learning rate?[Math Processing Error]?in the previous update rule with the RMS of parameter updates finally yields the Adadelta update rule:

[Math Processing Error].

[Math Processing Error].

With Adadelta, we do not even need to set a default learning rate, as it has been eliminated from the update rule.

RMSprop

RMSprop is an unpublished, adaptive learning rate method proposed by Geoff Hinton in?Lecture 6e of his Coursera Class.

RMSprop and Adadelta have both been developed independently around the same time stemming from the need to resolve Adagrad's radically diminishing learning rates. RMSprop in fact is identical to the first update vector of Adadelta that we derived above:

[Math Processing Error].

[Math Processing Error].

RMSprop as well divides the learning rate by an exponentially decaying average of squared gradients. Hinton suggests?[Math Processing Error]?to be set to 0.9, while a good default value for the learning rate?[Math Processing Error]?is 0.001.

Adam

Adaptive Moment Estimation (Adam) [15] is another method that computes adaptive learning rates for each parameter. In addition to storing an exponentially decaying average of past squared gradients?[Math Processing Error]?like Adadelta and RMSprop, Adam also keeps an exponentially decaying average of past gradients?[Math Processing Error], similar to momentum:

[Math Processing Error].

[Math Processing Error].

[Math Processing Error]?and?[Math Processing Error]?are estimates of the first moment (the mean) and the second moment (the uncentered variance) of the gradients respectively, hence the name of the method. As[Math Processing Error]?and?[Math Processing Error]?are initialized as vectors of 0's, the authors of Adam observe that they are biased towards zero, especially during the initial time steps, and especially when the decay rates are small (i.e.?[Math Processing Error]?and?[Math Processing Error]?are close to 1).

They counteract these biases by computing bias-corrected first and second moment estimates:

[Math Processing Error].

[Math Processing Error].

They then use these to update the parameters just as we have seen in Adadelta and RMSprop, which yields the Adam update rule:

[Math Processing Error].

They propose default values of 0.9 for?[Math Processing Error], 0.999 for?[Math Processing Error], and?[Math Processing Error]?for?[Math Processing Error]. They show empirically that Adam works well in practice and compares favorably to other adaptive learning-method algorithms.

Visualization of algorithms

The following two animations (Image credit:?Alec Radford) provide some intuitions towards the optimization behaviour of the presented optimization algorithms.

In Image 5, we see their behaviour on the contours of a loss surface over time. Note that Adagrad, Adadelta, and RMSprop almost immediately head off in the right direction and converge similarly fast, while Momentum and NAG are led off-track, evoking the image of a ball rolling down the hill. NAG, however, is quickly able to correct its course due to its increased responsiveness by looking ahead and heads to the minimum.

Image 6 shows the behaviour of the algorithms at a saddle point, i.e. a point where one dimension has a positive slope, while the other dimension has a negative slope, which pose a difficulty for SGD as we mentioned before. Notice here that SGD, Momentum, and NAG have a hard time breaking symmetry, although the two latter eventually manage to escape the saddle point, while Adagrad, RMSprop, and Adadelta quickly head down the negative slope.

Image 5: SGD optimization on loss surface contours Image 6: SGD optimization on saddle point

As we can see, the adaptive learning-rate methods, i.e. Adagrad, Adadelta, RMSprop, and Adam are most suitable and provide the best convergence for these scenarios.

Which optimizer to use?

So, which optimizer should you now use? If your input data is sparse, then you likely achieve the best results using one of the adaptive learning-rate methods. An additional benefit is that you won't need to tune the learning rate but likely achieve the best results with the default value.

In summary, RMSprop is an extension of Adagrad that deals with its radically diminishing learning rates. It is identical to Adadelta, except that Adadelta uses the RMS of parameter updates in the numinator update rule. Adam, finally, adds bias-correction and momentum to RMSprop. Insofar, RMSprop, Adadelta, and Adam are very similar algorithms that do well in similar circumstances. Kingma et al. [15] show that its bias-correction helps Adam slightly outperform RMSprop towards the end of optimization as gradients become sparser. Insofar, Adam might be the best overall choice.

Interestingly, many recent papers use vanilla SGD without momentum and a simple learning rate annealing schedule. As has been shown, SGD usually achieves to find a minimum, but it might take significantly longer than with some of the optimizers, is much more reliant on a robust initialization and annealing schedule, and may get stuck in saddle points rather than local minima. Consequently, if you care about fast convergence and train a deep or complex neural network, you should choose one of the adaptive learning rate methods.

Parallelizing and distributing SGD

Given the ubiquity of large-scale data solutions and the availability of low-commodity clusters, distributing SGD to speed it up further is an obvious choice.?
SGD by itself is inherently sequential: Step-by-step, we progress further towards the minimum. Running it provides good convergence but can be slow particularly on large datasets. In contrast, running SGD asynchronously is faster, but suboptimal communication between workers can lead to poor convergence. Additionally, we can also parallelize SGD on one machine without the need for a large computing cluster. The following are algorithms and architectures that have been proposed to optimize parallelized and distributed SGD.

Hogwild!

Niu et al. [23] introduce an update scheme called Hogwild! that allows performing SGD updates in parallel on CPUs. Processors are allowed to access shared memory without locking the parameters. This only works if the input data is sparse, as each update will only modify a fraction of all parameters. They show that in this case, the update scheme achieves almost an optimal rate of convergence, as it is unlikely that processors will overwrite useful information.

Downpour SGD

Downpour SGD is an asynchronous variant of SGD that was used by Dean et al. [4] in their DistBelief framework (predecessor to TensorFlow) at Google. It runs multiple replicas of a model in parallel on subsets of the training data. These models send their updates to a parameter server, which is split across many machines. Each machine is responsible for storing and updating a fraction of the model's parameters. However, as replicas don't communicate with each other e.g. by sharing weights or updates, their parameters are continuously at risk of diverging, hindering convergence.

Delay-tolerant Algorithms for SGD

McMahan and Streeter [12] extend AdaGrad to the parallel setting by developing delay-tolerant algorithms that not only adapt to past gradients, but also to the update delays. This has been shown to work well in practice.

TensorFlow

TensorFlow?[13] is Google's recently open-sourced framework for the implementation and deployment of large-scale machine learning models. It is based on their experience with DistBelief and is already used internally to perform computations on a large range of mobile devices as well as on large-scale distributed systems. For distributed execution, a computation graph is split into a subgraph for every device and communication takes place using Send/Receive node pairs. However, the open source version of TensorFlow currently does not support distributed functionality (see?here).

?Elastic Averaging SGD

Zhang et al. [14] propose Elastic Averaging SGD (EASGD), which links the parameters of the workers of asynchronous SGD with an elastic force, i.e. a center variable stored by the parameter server. This allows the local variables to fluctuate further from the center variable, which in theory allows for more exploration of the parameter space. They show empirically that this increased capacity for exploration leads to improved performance by finding new local optima.

Additional strategies for optimizing SGD

Finally, we introduce additional strategies that can be used alongside any of the previously mentioned algorithms to further improve the performance of SGD. For a great overview of some of some other common tricks, refer to [22].

Shuffling and Curriculum Learning

Generally, we want to avoid providing the training examples in a meaningful order to our model as this may bias the optimization algorithm. Consequently, it is often a good idea to shuffle the training data after every epoch.

On the other hand, for some cases where we aim to solve progressively harder problems, supplying the training examples in a meaningful order may actually lead to improved performance and better convergence. The method for establishing this meaningful order is called Curriculum Learning [16].

Zaremba and Sutskever [17] were only able to train LSTMs to evaluate simple programs using Curriculum Learning and show that a combined or mixed strategy is better than the naive one, which shorts examples by increasing difficulty.

Batch normalization

To facilitate learning, we typically normalize the initial values of our parameters by initializing them with zero mean and unit variance. As training progresses and we update parameters to different extents, we lose this normalization, which slows down training and amplifies changes as the network becomes deeper.

Batch normalization [18] reestablishes these normalizations for every mini-batch and changes are back-propagated through the operation as well. By making normalization part of the model architecture, we are able to use higher learning rates and pay less attention to the initialization parameters. Batch normalization additionally acts as a regularizer, reducing (and sometimes even eliminating) the need for Dropout.

Early stopping

According to Geoff Hinton: "Early stopping (is) beautiful free lunch" (NIPS 2015 Tutorial slides, slide 63). You should thus always monitor error on a validation set during training and stop (with some patience) if your validation error does not improve enough.

Gradient noise

Neelakantan et al. [21] add noise that follows a Gaussian distribution?[Math Processing Error]?to each gradient update:

[Math Processing Error].

They anneal the variance according to the following schedule:

[Math Processing Error].

They show that adding this noise makes networks more robust to poor initialization and helps training particularly deep and complex networks. They suspect that the added noise gives the model more chances to escape and find new local minima, which are more frequent for deeper models.

Conclusion

In this blog post, we have initially looked at the three variants of gradient descent, among which mini-batch gradient descent is the most popular. We have then investigated algorithms that are most commonly used for optimizing SGD: Momentum, Nesterov accelerated gradient, Adagrad, Adadelta, RMSprop, Adam, as well as different algorithms to optimize asynchronous SGD. Finally, we've considered other strategies to improve SGD such as shuffling and curriculum learning, batch normalization, and early stopping.

I hope that this blog post was able to provide you with some intuitions towards the motivation and the behaviour of the different optimization algorithms. Are there any obvious algorithms to improve SGD that I've missed? What tricks are you using yourself to facilitate training with SGD??Let me know in the comments below.

Acknowledgements

Thanks to?Denny Britz?and?Cesar Salgado?for reading drafts of this post and providing suggestions.

References

  • Sutton, R. S. (1986). Two problems with backpropagation and other steepest-descent learning procedures for networks. Proc. 8th Annual Conf. Cognitive Science Society.?

  • Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural Networks : The Official Journal of the International Neural Network Society, 12(1), 145–151.http://doi.org/10.1016/S0893-6080(98)00116-6?

  • Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. Journal of Machine Learning Research, 12, 2121–2159. Retrieved fromhttp://jmlr.org/papers/v12/duchi11a.html?

  • Dean, J., Corrado, G. S., Monga, R., Chen, K., Devin, M., Le, Q. V, … Ng, A. Y. (2012). Large Scale Distributed Deep Networks. NIPS 2012: Neural Information Processing Systems, 1–11.http://doi.org/10.1109/ICDAR.2011.95?

  • Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global Vectors for Word Representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 1532–1543.http://doi.org/10.3115/v1/D14-1162?

  • Zeiler, M. D. (2012). ADADELTA: An Adaptive Learning Rate Method. Retrieved fromhttp://arxiv.org/abs/1212.5701?

  • Nesterov, Y. (1983). A method for unconstrained convex minimization problem with the rate of convergence o(1/k2). Doklady ANSSSR (translated as Soviet.Math.Docl.), vol. 269, pp. 543– 547.?

  • Bengio, Y., Boulanger-Lewandowski, N., & Pascanu, R. (2012). Advances in Optimizing Recurrent Networks. Retrieved from?http://arxiv.org/abs/1212.0901?

  • Sutskever, I. (2013). Training Recurrent neural Networks. PhD Thesis.?

  • Darken, C., Chang, J., & Moody, J. (1992). Learning rate schedules for faster stochastic gradient search. Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop, (September), 1–11.http://doi.org/10.1109/NNSP.1992.253713?

  • H. Robinds and S. Monro, “A stochastic approximation method,” Annals of Mathematical Statistics, vol. 22, pp. 400–407, 1951.?

  • Mcmahan, H. B., & Streeter, M. (2014). Delay-Tolerant Algorithms for Asynchronous Distributed Online Learning. Advances in Neural Information Processing Systems (Proceedings of NIPS), 1–9.?

  • Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., … Zheng, X. (2015). TensorFlow : Large-Scale Machine Learning on Heterogeneous Distributed Systems.?

  • Zhang, S., Choromanska, A., & LeCun, Y. (2015). Deep learning with Elastic Averaging SGD. Neural Information Processing Systems Conference (NIPS 2015), 1–24. Retrieved fromhttp://arxiv.org/abs/1412.6651?

  • Kingma, D. P., & Ba, J. L. (2015). Adam: a Method for Stochastic Optimization. International Conference on Learning Representations, 1–13.?

  • Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009). Curriculum learning. Proceedings of the 26th Annual International Conference on Machine Learning, 41–48.?http://doi.org/10.1145/1553374.1553380?

  • Zaremba, W., & Sutskever, I. (2014). Learning to Execute, 1–25. Retrieved fromhttp://arxiv.org/abs/1410.4615?

  • Ioffe, S., & Szegedy, C. (2015). Batch Normalization : Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv Preprint arXiv:1502.03167v3.?

  • Dauphin, Y., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., & Bengio, Y. (2014). Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. arXiv, 1–14. Retrieved fromhttp://arxiv.org/abs/1406.2572?

  • Sutskever, I., & Martens, J. (2013). On the importance of initialization and momentum in deep learning.http://doi.org/10.1109/ICASSP.2013.6639346?

  • Neelakantan, A., Vilnis, L., Le, Q. V., Sutskever, I., Kaiser, L., Kurach, K., & Martens, J. (2015). Adding Gradient Noise Improves Learning for Very Deep Networks, 1–11. Retrieved fromhttp://arxiv.org/abs/1511.06807?

  • LeCun, Y., Bottou, L., Orr, G. B., & Müller, K. R. (1998). Efficient BackProp. Neural Networks: Tricks of the Trade, 1524, 9–50.?http://doi.org/10.1007/3-540-49430-8_2?

  • Niu, F., Recht, B., Christopher, R., & Wright, S. J. (2011). Hogwild ! : A Lock-Free Approach to Parallelizing Stochastic Gradient Descent, 1–22.?

  • Duchi et al. [3] give this matrix as an alternative to the?full?matrix containing the outer products of all previous gradients, as the computation of the matrix square root is infeasible even for a moderate number of parameters?[Math Processing Error].?

  • Image credit for cover photo:?Karpathy's beautiful loss functions tumblr


    《新程序員》:云原生和全面數字化實踐50位技術專家共同創作,文字、視頻、音頻交互閱讀

    總結

    以上是生活随笔為你收集整理的An overview of gradient descent optimization algorithms的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

    亚洲人成无码网www | 国产成人无码区免费内射一片色欲 | 国产精品无码成人午夜电影 | 亚洲熟女一区二区三区 | 少妇性荡欲午夜性开放视频剧场 | 亚洲另类伦春色综合小说 | 国产又爽又黄又刺激的视频 | 午夜精品久久久内射近拍高清 | 亲嘴扒胸摸屁股激烈网站 | 成人女人看片免费视频放人 | 少妇厨房愉情理9仑片视频 | ass日本丰满熟妇pics | 欧美老熟妇乱xxxxx | 日韩av无码中文无码电影 | 欧美丰满熟妇xxxx | 漂亮人妻洗澡被公强 日日躁 | 免费国产成人高清在线观看网站 | 亚洲中文字幕无码中文字在线 | 欧美熟妇另类久久久久久不卡 | 东京热无码av男人的天堂 | 天堂久久天堂av色综合 | 内射白嫩少妇超碰 | 少妇无码吹潮 | 久久精品女人天堂av免费观看 | 天天躁日日躁狠狠躁免费麻豆 | 日本护士xxxxhd少妇 | 国精产品一区二区三区 | 久久综合激激的五月天 | 国产无遮挡吃胸膜奶免费看 | 中文久久乱码一区二区 | 亚洲欧美日韩国产精品一区二区 | 国产办公室秘书无码精品99 | 久久综合给久久狠狠97色 | 波多野42部无码喷潮在线 | 亚洲精品一区二区三区在线观看 | 伊人久久大香线焦av综合影院 | 国产精品无码一区二区三区不卡 | 免费国产成人高清在线观看网站 | 欧美日本日韩 | 无人区乱码一区二区三区 | 精品久久久久久亚洲精品 | 国产猛烈高潮尖叫视频免费 | 麻豆精产国品 | 亚洲s色大片在线观看 | 99精品视频在线观看免费 | 一本久久伊人热热精品中文字幕 | 国产区女主播在线观看 | 无码帝国www无码专区色综合 | 丝袜足控一区二区三区 | 狠狠亚洲超碰狼人久久 | 蜜桃av抽搐高潮一区二区 | 国产成人精品一区二区在线小狼 | 国产性猛交╳xxx乱大交 国产精品久久久久久无码 欧洲欧美人成视频在线 | 狠狠色噜噜狠狠狠狠7777米奇 | 少妇的肉体aa片免费 | 日产精品99久久久久久 | 欧美精品免费观看二区 | 老子影院午夜精品无码 | 六月丁香婷婷色狠狠久久 | 欧美老熟妇乱xxxxx | 无码精品人妻一区二区三区av | 在线欧美精品一区二区三区 | 2020久久香蕉国产线看观看 | 97色伦图片97综合影院 | 亚洲va欧美va天堂v国产综合 | 久在线观看福利视频 | 国产亚洲精品久久久久久大师 | 无码纯肉视频在线观看 | 亚洲综合精品香蕉久久网 | 日韩av无码一区二区三区 | 亚洲国产精品一区二区第一页 | 久久精品视频在线看15 | 水蜜桃亚洲一二三四在线 | 国产偷国产偷精品高清尤物 | 在线亚洲高清揄拍自拍一品区 | 狂野欧美性猛交免费视频 | 大地资源中文第3页 | 久久人人爽人人爽人人片ⅴ | 女人被爽到呻吟gif动态图视看 | 鲁鲁鲁爽爽爽在线视频观看 | 东京热男人av天堂 | 亚洲国产精品久久人人爱 | 国内揄拍国内精品少妇国语 | 亚洲呦女专区 | 国产精品久免费的黄网站 | 国产精品无码一区二区三区不卡 | 狠狠色丁香久久婷婷综合五月 | 日本丰满熟妇videos | 国产av无码专区亚洲awww | 国产莉萝无码av在线播放 | 国产午夜精品一区二区三区嫩草 | 色一情一乱一伦一区二区三欧美 | 久久精品无码一区二区三区 | 欧美性猛交xxxx富婆 | 精品一二三区久久aaa片 | 中文字幕av无码一区二区三区电影 | 人人妻人人澡人人爽人人精品 | 99精品无人区乱码1区2区3区 | 国产激情艳情在线看视频 | 欧美老人巨大xxxx做受 | 久久 国产 尿 小便 嘘嘘 | 天天燥日日燥 | 亚洲成av人综合在线观看 | 中文字幕乱码人妻无码久久 | 奇米影视888欧美在线观看 | 亚洲精品久久久久avwww潮水 | 国产口爆吞精在线视频 | 色五月五月丁香亚洲综合网 | 18禁黄网站男男禁片免费观看 | 人人妻人人藻人人爽欧美一区 | 国产午夜无码视频在线观看 | 国产熟女一区二区三区四区五区 | 无套内谢的新婚少妇国语播放 | 老熟妇乱子伦牲交视频 | 久久久久久久女国产乱让韩 | 亚洲aⅴ无码成人网站国产app | 亚洲成av人综合在线观看 | 亚洲日韩av一区二区三区四区 | 色窝窝无码一区二区三区色欲 | 奇米影视888欧美在线观看 | 国产午夜亚洲精品不卡下载 | 荡女精品导航 | 成人综合网亚洲伊人 | 麻豆果冻传媒2021精品传媒一区下载 | 亚洲人成人无码网www国产 | 99久久人妻精品免费一区 | 久久精品国产日本波多野结衣 | 伦伦影院午夜理论片 | 国产精品久久久午夜夜伦鲁鲁 | 人人妻人人澡人人爽人人精品浪潮 | 亚洲最大成人网站 | 国产特级毛片aaaaaaa高清 | 亚洲 a v无 码免 费 成 人 a v | 欧美人与动性行为视频 | 国产精品国产自线拍免费软件 | 亚洲成在人网站无码天堂 | 久久久av男人的天堂 | 国产精品对白交换视频 | 国产精品无码一区二区桃花视频 | 人人妻人人澡人人爽精品欧美 | 日本一区二区更新不卡 | 沈阳熟女露脸对白视频 | 国产成人精品一区二区在线小狼 | 曰韩无码二三区中文字幕 | 捆绑白丝粉色jk震动捧喷白浆 | 国产又粗又硬又大爽黄老大爷视 | 成人片黄网站色大片免费观看 | 亚洲男人av香蕉爽爽爽爽 | 国产在线精品一区二区三区直播 | 国产av无码专区亚洲awww | 成年美女黄网站色大免费全看 | 性欧美熟妇videofreesex | 1000部夫妻午夜免费 | 亚洲综合伊人久久大杳蕉 | 午夜男女很黄的视频 | 特黄特色大片免费播放器图片 | 久久精品成人欧美大片 | 亚洲国产成人av在线观看 | 中文字幕人妻丝袜二区 | 成 人 网 站国产免费观看 | 巨爆乳无码视频在线观看 | 亚洲一区二区三区香蕉 | 少妇高潮一区二区三区99 | 成人性做爰aaa片免费看不忠 | 亚洲精品国产精品乱码不卡 | 少妇高潮一区二区三区99 | 思思久久99热只有频精品66 | 无码国产乱人伦偷精品视频 | 精品国产一区二区三区四区 | 国产精品二区一区二区aⅴ污介绍 | 亚洲男人av香蕉爽爽爽爽 | 色 综合 欧美 亚洲 国产 | 日韩人妻无码中文字幕视频 | 51国偷自产一区二区三区 | 成人三级无码视频在线观看 | 国产精品人妻一区二区三区四 | 大肉大捧一进一出视频出来呀 | 国产69精品久久久久app下载 | 国产精华av午夜在线观看 | 欧美精品免费观看二区 | 在线亚洲高清揄拍自拍一品区 | 国产在线精品一区二区三区直播 | 亚洲无人区午夜福利码高清完整版 | 精品国产成人一区二区三区 | 强辱丰满人妻hd中文字幕 | 国产精品人人爽人人做我的可爱 | 国语自产偷拍精品视频偷 | 18精品久久久无码午夜福利 | 少妇无码吹潮 | 亚洲の无码国产の无码步美 | 福利一区二区三区视频在线观看 | 少妇厨房愉情理9仑片视频 | 无码帝国www无码专区色综合 | 亚洲欧洲无卡二区视頻 | 丰满人妻精品国产99aⅴ | 大胆欧美熟妇xx | 精品日本一区二区三区在线观看 | 人人澡人人妻人人爽人人蜜桃 | 日韩人妻无码中文字幕视频 | 51国偷自产一区二区三区 | 亚洲综合在线一区二区三区 | 1000部夫妻午夜免费 | 亚洲综合无码久久精品综合 | 草草网站影院白丝内射 | 国产9 9在线 | 中文 | 蜜桃视频韩日免费播放 | 青青草原综合久久大伊人精品 | 欧美xxxxx精品 | 日本精品少妇一区二区三区 | 国产精品久久久久久亚洲毛片 | 国产亚洲视频中文字幕97精品 | 99riav国产精品视频 | 国产精品嫩草久久久久 | 99久久精品日本一区二区免费 | 欧美日本精品一区二区三区 | 国产乱人偷精品人妻a片 | 午夜熟女插插xx免费视频 | 人妻插b视频一区二区三区 | 亚洲七七久久桃花影院 | 日本熟妇浓毛 | 骚片av蜜桃精品一区 | 特黄特色大片免费播放器图片 | 又湿又紧又大又爽a视频国产 | 熟女体下毛毛黑森林 | 亚洲成av人影院在线观看 | 亚洲精品久久久久中文第一幕 | 青青草原综合久久大伊人精品 | 亚洲の无码国产の无码影院 | 3d动漫精品啪啪一区二区中 | 亚洲精品久久久久久久久久久 | 国产精品毛片一区二区 | 久久精品女人的天堂av | 4hu四虎永久在线观看 | 天下第一社区视频www日本 | 亚洲爆乳精品无码一区二区三区 | 国产精品丝袜黑色高跟鞋 | 强辱丰满人妻hd中文字幕 | 国产内射老熟女aaaa | 国产精品高潮呻吟av久久4虎 | 免费国产成人高清在线观看网站 | 国产精品无码一区二区桃花视频 | 国产av剧情md精品麻豆 | 日日天干夜夜狠狠爱 | 久久国产36精品色熟妇 | 欧美大屁股xxxxhd黑色 | 天堂无码人妻精品一区二区三区 | 青青草原综合久久大伊人精品 | 精品久久综合1区2区3区激情 | 麻豆md0077饥渴少妇 | 亚洲狠狠婷婷综合久久 | 樱花草在线播放免费中文 | 精品国偷自产在线视频 | 亚洲欧美精品aaaaaa片 | 国产九九九九九九九a片 | 小泽玛莉亚一区二区视频在线 | 亚洲欧洲日本无在线码 | 亚洲综合精品香蕉久久网 | 丰满少妇熟乱xxxxx视频 | 亚洲国产精品无码久久久久高潮 | 色 综合 欧美 亚洲 国产 | 久久综合狠狠综合久久综合88 | 免费无码的av片在线观看 | 少妇性荡欲午夜性开放视频剧场 | 窝窝午夜理论片影院 | 亚洲一区二区观看播放 | 亚洲精品中文字幕乱码 | 国产人妻精品一区二区三区不卡 | 99久久精品日本一区二区免费 | 人人妻人人藻人人爽欧美一区 | 中文字幕日韩精品一区二区三区 | 激情五月综合色婷婷一区二区 | 高清无码午夜福利视频 | 精品无码av一区二区三区 | 欧美第一黄网免费网站 | 国产精品久久久久无码av色戒 | 亚洲人交乣女bbw | 日本一区二区三区免费播放 | 国产疯狂伦交大片 | 欧美猛少妇色xxxxx | 亚洲欧美日韩综合久久久 | 国产尤物精品视频 | 久久国产精品萌白酱免费 | 亚洲午夜无码久久 | 一本色道久久综合狠狠躁 | 亚洲区小说区激情区图片区 | 狠狠色欧美亚洲狠狠色www | 日日碰狠狠丁香久燥 | 亚洲日韩一区二区三区 | 极品尤物被啪到呻吟喷水 | 双乳奶水饱满少妇呻吟 | 亚洲一区二区观看播放 | 久久亚洲精品中文字幕无男同 | 四虎影视成人永久免费观看视频 | 在线a亚洲视频播放在线观看 | 国产精品久久久久久久9999 | 欧美日韩视频无码一区二区三 | 国产精品无码成人午夜电影 | 欧美午夜特黄aaaaaa片 | 久久亚洲a片com人成 | 麻豆人妻少妇精品无码专区 | 性色欲情网站iwww九文堂 | 久青草影院在线观看国产 | 扒开双腿吃奶呻吟做受视频 | 亚洲精品中文字幕久久久久 | 成年女人永久免费看片 | 久久亚洲a片com人成 | 国产欧美熟妇另类久久久 | 成人亚洲精品久久久久软件 | 国产一区二区三区影院 | 国产特级毛片aaaaaa高潮流水 | 好屌草这里只有精品 | 在线看片无码永久免费视频 | 亚洲 另类 在线 欧美 制服 | 玩弄少妇高潮ⅹxxxyw | 久久综合久久自在自线精品自 | 亚洲日韩精品欧美一区二区 | 久久国产精品萌白酱免费 | 青青草原综合久久大伊人精品 | 丰满人妻一区二区三区免费视频 | 色偷偷人人澡人人爽人人模 | 国产激情无码一区二区 | 国产免费久久精品国产传媒 | 国产成人人人97超碰超爽8 | 97精品人妻一区二区三区香蕉 | 国产猛烈高潮尖叫视频免费 | 国产凸凹视频一区二区 | 无码福利日韩神码福利片 | 国内少妇偷人精品视频免费 | 国产激情一区二区三区 | 日本大乳高潮视频在线观看 | 精品少妇爆乳无码av无码专区 | 中文字幕无码人妻少妇免费 | 婷婷综合久久中文字幕蜜桃三电影 | 国产精品亚洲五月天高清 | 无码国产乱人伦偷精品视频 | 婷婷五月综合激情中文字幕 | 国产精品理论片在线观看 | 国产精品久久国产三级国 | 成人三级无码视频在线观看 | 天干天干啦夜天干天2017 | 久久精品中文字幕大胸 | 午夜免费福利小电影 | 亚洲一区二区三区在线观看网站 | 中文亚洲成a人片在线观看 | 97精品人妻一区二区三区香蕉 | 在线观看国产一区二区三区 | 久久久久成人片免费观看蜜芽 | 成人影院yy111111在线观看 | 久久久www成人免费毛片 | 在线亚洲高清揄拍自拍一品区 | 欧美丰满老熟妇xxxxx性 | 熟女少妇在线视频播放 | 激情人妻另类人妻伦 | 国产亚洲精品久久久久久大师 | 国产成人无码午夜视频在线观看 | 久久无码中文字幕免费影院蜜桃 | 国产精品成人av在线观看 | 少妇性l交大片 | 亚洲日韩一区二区三区 | 久久久精品人妻久久影视 | 国产成人一区二区三区在线观看 | 永久黄网站色视频免费直播 | 亚洲色大成网站www国产 | 国产精品久久国产三级国 | 日韩亚洲欧美精品综合 | 国产午夜无码视频在线观看 | 国产精品亚洲а∨无码播放麻豆 | 成人性做爰aaa片免费看不忠 | 99国产欧美久久久精品 | 国产凸凹视频一区二区 | 色婷婷综合中文久久一本 | 国产香蕉尹人综合在线观看 | 精品久久综合1区2区3区激情 | 亚洲日本一区二区三区在线 | 色综合久久久久综合一本到桃花网 | 男女下面进入的视频免费午夜 | 性欧美疯狂xxxxbbbb | 亚洲中文字幕乱码av波多ji | 三级4级全黄60分钟 | 成人试看120秒体验区 | 亚洲一区二区三区播放 | 内射白嫩少妇超碰 | 2019nv天堂香蕉在线观看 | 久久久久亚洲精品男人的天堂 | 久久久精品人妻久久影视 | 日本精品少妇一区二区三区 | 久久国产劲爆∧v内射 | 久久久久久av无码免费看大片 | 爽爽影院免费观看 | 成熟妇人a片免费看网站 | 一个人看的www免费视频在线观看 | 国产亚洲欧美日韩亚洲中文色 | 精品国产成人一区二区三区 | 狠狠噜狠狠狠狠丁香五月 | 蜜桃视频插满18在线观看 | 国产人妻人伦精品1国产丝袜 | 免费无码肉片在线观看 | 午夜福利电影 | 特级做a爰片毛片免费69 | 日本丰满护士爆乳xxxx | 三上悠亚人妻中文字幕在线 | 88国产精品欧美一区二区三区 | 少妇高潮一区二区三区99 | 亚洲男人av香蕉爽爽爽爽 | 最新国产麻豆aⅴ精品无码 | 青青草原综合久久大伊人精品 | 男人扒开女人内裤强吻桶进去 | 熟妇人妻无乱码中文字幕 | 97se亚洲精品一区 | 色 综合 欧美 亚洲 国产 | av无码电影一区二区三区 | 成人片黄网站色大片免费观看 | 麻豆人妻少妇精品无码专区 | 三上悠亚人妻中文字幕在线 | 国产精品视频免费播放 | 亚洲精品久久久久avwww潮水 | 日韩人妻无码中文字幕视频 | 强奷人妻日本中文字幕 | 久久久久国色av免费观看性色 | 伊人久久大香线蕉午夜 | 亚洲色欲久久久综合网东京热 | 97精品国产97久久久久久免费 | 国产精品久久久久久久9999 | 中文字幕色婷婷在线视频 | 国产精品多人p群无码 | 鲁大师影院在线观看 | 久久国产精品偷任你爽任你 | 97夜夜澡人人双人人人喊 | 色欲久久久天天天综合网精品 | 成人av无码一区二区三区 | 狠狠综合久久久久综合网 | 领导边摸边吃奶边做爽在线观看 | 东京热男人av天堂 | 欧美 丝袜 自拍 制服 另类 | 亚洲成a人片在线观看日本 | 亚洲综合在线一区二区三区 | 最近免费中文字幕中文高清百度 | 国产精品18久久久久久麻辣 | 综合激情五月综合激情五月激情1 | 精品人妻中文字幕有码在线 | 亚洲第一网站男人都懂 | 欧美亚洲国产一区二区三区 | 台湾无码一区二区 | 亚洲成av人在线观看网址 | 亚欧洲精品在线视频免费观看 | 300部国产真实乱 | 成人av无码一区二区三区 | 色婷婷欧美在线播放内射 | 老头边吃奶边弄进去呻吟 | 成人性做爰aaa片免费看不忠 | 国产一区二区不卡老阿姨 | 成在人线av无码免费 | 国产高清av在线播放 | 亚洲色欲色欲欲www在线 | 欧美老妇交乱视频在线观看 | 久久成人a毛片免费观看网站 | 天堂亚洲2017在线观看 | 日韩视频 中文字幕 视频一区 | 樱花草在线社区www | 成 人 免费观看网站 | 精品人妻中文字幕有码在线 | 国产亚洲精品久久久久久大师 | 欧美性生交xxxxx久久久 | a国产一区二区免费入口 | 俺去俺来也www色官网 | 亚洲国产精品久久久天堂 | 国产激情一区二区三区 | 亚洲区小说区激情区图片区 | 亚洲色无码一区二区三区 | 国产亚洲精品久久久闺蜜 | 中文字幕无码日韩欧毛 | 2020最新国产自产精品 | 国产精品久久久 | 国产亚洲精品久久久久久国模美 | 色窝窝无码一区二区三区色欲 | 日韩精品无码一本二本三本色 | 香港三级日本三级妇三级 | 性欧美大战久久久久久久 | 亚洲国产精品毛片av不卡在线 | 亚洲色无码一区二区三区 | 无码一区二区三区在线 | 粗大的内捧猛烈进出视频 | 亚洲精品中文字幕久久久久 | 黑人玩弄人妻中文在线 | 在线成人www免费观看视频 | 无码av免费一区二区三区试看 | 成人一区二区免费视频 | 人妻aⅴ无码一区二区三区 | 丰满少妇弄高潮了www | 天天拍夜夜添久久精品 | 亚洲毛片av日韩av无码 | 亚洲国产欧美在线成人 | 九九热爱视频精品 | 野外少妇愉情中文字幕 | 亚洲乱码国产乱码精品精 | 久久人妻内射无码一区三区 | 久久精品国产精品国产精品污 | 亚洲精品中文字幕 | 久久亚洲国产成人精品性色 | 我要看www免费看插插视频 | 图片区 小说区 区 亚洲五月 | 小鲜肉自慰网站xnxx | 色婷婷欧美在线播放内射 | 中文字幕精品av一区二区五区 | 丰满少妇女裸体bbw | 亚洲高清偷拍一区二区三区 | 国产av人人夜夜澡人人爽麻豆 | 午夜精品久久久久久久久 | 亲嘴扒胸摸屁股激烈网站 | 日韩亚洲欧美中文高清在线 | 未满成年国产在线观看 | 色窝窝无码一区二区三区色欲 | 成年美女黄网站色大免费视频 | 人妻中文无码久热丝袜 | 熟妇人妻中文av无码 | 日韩亚洲欧美精品综合 | 男人扒开女人内裤强吻桶进去 | 亚洲人成影院在线无码按摩店 | 丰满诱人的人妻3 | 中文字幕人成乱码熟女app | 久久aⅴ免费观看 | 中文字幕av伊人av无码av | 久久99精品久久久久久动态图 | 伊人久久大香线焦av综合影院 | 永久免费观看美女裸体的网站 | av在线亚洲欧洲日产一区二区 | 国产又粗又硬又大爽黄老大爷视 | 精品人妻人人做人人爽夜夜爽 | 内射巨臀欧美在线视频 | 少妇邻居内射在线 | 国产成人精品三级麻豆 | 7777奇米四色成人眼影 | 久久精品中文字幕一区 | 国产真实伦对白全集 | 亚洲欧洲中文日韩av乱码 | 国产成人无码a区在线观看视频app | 免费无码午夜福利片69 | 国产亚av手机在线观看 | 欧美老妇交乱视频在线观看 | 精品厕所偷拍各类美女tp嘘嘘 | 精品少妇爆乳无码av无码专区 | 免费无码一区二区三区蜜桃大 | 中文字幕无码av激情不卡 | 亚洲欧洲无卡二区视頻 | 国产成人久久精品流白浆 | 亚洲成a人片在线观看无码 | 麻豆精产国品 | 欧美兽交xxxx×视频 | 蜜臀aⅴ国产精品久久久国产老师 | 波多野结衣乳巨码无在线观看 | 久久99久久99精品中文字幕 | 少妇人妻大乳在线视频 | 中国女人内谢69xxxxxa片 | 免费中文字幕日韩欧美 | 欧美丰满少妇xxxx性 | 骚片av蜜桃精品一区 | 精品国产福利一区二区 | 国产成人精品一区二区在线小狼 | 亚洲精品国产精品乱码视色 | 欧美性黑人极品hd | 少妇性荡欲午夜性开放视频剧场 | 亚洲人成无码网www | 人妻插b视频一区二区三区 | 少妇久久久久久人妻无码 | 欧美大屁股xxxxhd黑色 | 少妇高潮喷潮久久久影院 | 2019nv天堂香蕉在线观看 | 亚洲一区二区三区无码久久 | 97人妻精品一区二区三区 | 欧美日韩久久久精品a片 | 国产精品无码mv在线观看 | 无码国模国产在线观看 | 亚洲 激情 小说 另类 欧美 | 成人aaa片一区国产精品 | 国产乱人伦偷精品视频 | 日韩精品无码免费一区二区三区 | 国产精华av午夜在线观看 | 亚洲国产av精品一区二区蜜芽 | 成人无码影片精品久久久 | 午夜性刺激在线视频免费 | 久热国产vs视频在线观看 | 三上悠亚人妻中文字幕在线 | 无码播放一区二区三区 | 国产猛烈高潮尖叫视频免费 | 97色伦图片97综合影院 | 日欧一片内射va在线影院 | 天天拍夜夜添久久精品 | 婷婷丁香五月天综合东京热 | 日韩人妻少妇一区二区三区 | 日产精品高潮呻吟av久久 | 少妇一晚三次一区二区三区 | 天堂在线观看www | 黑人巨大精品欧美一区二区 | 帮老师解开蕾丝奶罩吸乳网站 | 中文字幕亚洲情99在线 | 国产亚洲精品精品国产亚洲综合 | 男女下面进入的视频免费午夜 | 国产精品多人p群无码 | 丰满护士巨好爽好大乳 | 免费乱码人妻系列无码专区 | 伊人久久大香线蕉av一区二区 | 亚洲午夜福利在线观看 | 18无码粉嫩小泬无套在线观看 | 精品国产一区二区三区四区 | 亚洲成a人片在线观看无码 | 亚洲欧美日韩国产精品一区二区 | 国产成人综合美国十次 | 熟妇激情内射com | 国产 浪潮av性色四虎 | 又粗又大又硬又长又爽 | 中文字幕无线码 | 又湿又紧又大又爽a视频国产 | 67194成是人免费无码 | 欧美性猛交xxxx富婆 | 国产又爽又黄又刺激的视频 | 国产无套粉嫩白浆在线 | 亚洲人成影院在线无码按摩店 | 少妇无套内谢久久久久 | 97人妻精品一区二区三区 | 成熟人妻av无码专区 | 国产精品怡红院永久免费 | 久久人人爽人人爽人人片av高清 | 国产亚洲精品久久久久久久久动漫 | 成人片黄网站色大片免费观看 | 午夜男女很黄的视频 | 无套内射视频囯产 | 亚洲综合久久一区二区 | 任你躁国产自任一区二区三区 | 精品无码一区二区三区爱欲 | 中国女人内谢69xxxxxa片 | 久久国产36精品色熟妇 | 精品无码国产自产拍在线观看蜜 | 99麻豆久久久国产精品免费 | 日韩亚洲欧美中文高清在线 | 欧美人妻一区二区三区 | 久久久久久久人妻无码中文字幕爆 | 日本免费一区二区三区最新 | 无码av最新清无码专区吞精 | 国产亚av手机在线观看 | 亚洲午夜福利在线观看 | 久久久久亚洲精品男人的天堂 | 国产精品无码永久免费888 | 精品 日韩 国产 欧美 视频 | 国产精品久久久一区二区三区 | 少妇性l交大片 | 少妇高潮一区二区三区99 | 国产色xx群视频射精 | 亚洲中文字幕av在天堂 | 亚洲七七久久桃花影院 | 久久99精品国产麻豆 | 精品无码成人片一区二区98 | 99国产欧美久久久精品 | 日本一区二区三区免费播放 | 亚洲aⅴ无码成人网站国产app | 国精产品一区二区三区 | 国产精品无码一区二区三区不卡 | 成人欧美一区二区三区黑人免费 | 老熟女乱子伦 | 美女毛片一区二区三区四区 | 国产香蕉尹人综合在线观看 | 最近中文2019字幕第二页 | 97人妻精品一区二区三区 | 性色欲网站人妻丰满中文久久不卡 | 亚洲の无码国产の无码步美 | 久久无码中文字幕免费影院蜜桃 | 国语自产偷拍精品视频偷 | 国产办公室秘书无码精品99 | 国产97在线 | 亚洲 | 人人妻人人澡人人爽精品欧美 | 日本又色又爽又黄的a片18禁 | 乱码午夜-极国产极内射 | 久久精品国产99久久6动漫 | 色综合久久88色综合天天 | 国产成人精品必看 | 狠狠色色综合网站 | 妺妺窝人体色www婷婷 | 色综合久久中文娱乐网 | 精品厕所偷拍各类美女tp嘘嘘 | 一本大道久久东京热无码av | 人妻少妇被猛烈进入中文字幕 | 无码人妻丰满熟妇区毛片18 | 97人妻精品一区二区三区 | 亚洲欧美国产精品久久 | 亚洲人成影院在线无码按摩店 | 亚洲综合色区中文字幕 | 丰满护士巨好爽好大乳 | 97精品国产97久久久久久免费 | 国产高潮视频在线观看 | 野外少妇愉情中文字幕 | 日本欧美一区二区三区乱码 | 99久久婷婷国产综合精品青草免费 | 婷婷色婷婷开心五月四房播播 | 76少妇精品导航 | 丝袜美腿亚洲一区二区 | 97精品人妻一区二区三区香蕉 | 野外少妇愉情中文字幕 | 国产人成高清在线视频99最全资源 | 国产午夜亚洲精品不卡下载 | 日本精品人妻无码免费大全 | 天天摸天天透天天添 | 高潮毛片无遮挡高清免费 | 99久久婷婷国产综合精品青草免费 | 99久久久无码国产aaa精品 | 强辱丰满人妻hd中文字幕 | 精品人人妻人人澡人人爽人人 | 日本护士xxxxhd少妇 | 日韩欧美中文字幕在线三区 | 亚洲狠狠色丁香婷婷综合 | 国产无套内射久久久国产 | 欧美 亚洲 国产 另类 | 人妻中文无码久热丝袜 | 国产亚洲日韩欧美另类第八页 | 欧美丰满少妇xxxx性 | 综合人妻久久一区二区精品 | 一本久久a久久精品亚洲 | 久久天天躁狠狠躁夜夜免费观看 | 国产精品亚洲lv粉色 | 免费无码一区二区三区蜜桃大 | 国产无遮挡又黄又爽免费视频 | 熟妇人妻中文av无码 | 牛和人交xxxx欧美 | 国产97人人超碰caoprom | 精品国精品国产自在久国产87 | 蜜臀aⅴ国产精品久久久国产老师 | 国产人妻精品午夜福利免费 | 日本熟妇人妻xxxxx人hd | 国产精品美女久久久久av爽李琼 | 大地资源网第二页免费观看 | 丰满少妇人妻久久久久久 | 色一情一乱一伦一视频免费看 | 亚洲爆乳无码专区 | 熟女少妇人妻中文字幕 | 久久国产精品精品国产色婷婷 | 国产亚洲精品久久久ai换 | 免费男性肉肉影院 | 国产午夜精品一区二区三区嫩草 | 色综合久久网 | 欧美亚洲国产一区二区三区 | 亚洲男人av香蕉爽爽爽爽 | 扒开双腿疯狂进出爽爽爽视频 | 国产办公室秘书无码精品99 | 俺去俺来也www色官网 | 国产精品久久久午夜夜伦鲁鲁 | 国产精品无码一区二区三区不卡 | 日本精品人妻无码77777 天堂一区人妻无码 | 天天躁夜夜躁狠狠是什么心态 | 97精品人妻一区二区三区香蕉 | 国产麻豆精品一区二区三区v视界 | 男人扒开女人内裤强吻桶进去 | 久久久婷婷五月亚洲97号色 | 免费中文字幕日韩欧美 | 国产人妻人伦精品1国产丝袜 | 亚洲精品国产精品乱码不卡 | 欧美zoozzooz性欧美 | 强开小婷嫩苞又嫩又紧视频 | 天天摸天天碰天天添 | 欧美老人巨大xxxx做受 | 亚洲精品中文字幕 | 九月婷婷人人澡人人添人人爽 | 熟妇女人妻丰满少妇中文字幕 | www成人国产高清内射 | 人妻aⅴ无码一区二区三区 | 国产午夜福利亚洲第一 | 中国女人内谢69xxxx | 亚洲 a v无 码免 费 成 人 a v | 澳门永久av免费网站 | 天堂亚洲免费视频 | 又黄又爽又色的视频 | 成人片黄网站色大片免费观看 | 亚洲自偷自偷在线制服 | 国产免费久久精品国产传媒 | 日日碰狠狠躁久久躁蜜桃 | 97se亚洲精品一区 | 国产亚洲精品精品国产亚洲综合 | 亚洲日韩av片在线观看 | 亚洲小说春色综合另类 | 亚洲色在线无码国产精品不卡 | 中国大陆精品视频xxxx | 成人精品一区二区三区中文字幕 | 最新版天堂资源中文官网 | 蜜臀aⅴ国产精品久久久国产老师 | 狠狠色色综合网站 | 好男人社区资源 | 无码av免费一区二区三区试看 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 久久久婷婷五月亚洲97号色 | 亚洲成色在线综合网站 | 日韩欧美中文字幕在线三区 | 超碰97人人做人人爱少妇 | 国产精品香蕉在线观看 | 成人性做爰aaa片免费看不忠 | 国产亚洲tv在线观看 | 国产精品久久国产精品99 | 精品无人区无码乱码毛片国产 | 玩弄人妻少妇500系列视频 | 日韩视频 中文字幕 视频一区 | 波多野结衣aⅴ在线 | 亚洲色偷偷男人的天堂 | 国产人成高清在线视频99最全资源 | 一本精品99久久精品77 | 麻豆蜜桃av蜜臀av色欲av | 帮老师解开蕾丝奶罩吸乳网站 | 亚洲精品成人福利网站 | 又湿又紧又大又爽a视频国产 | 丰满诱人的人妻3 | 国产午夜福利100集发布 | 日韩亚洲欧美中文高清在线 | 国产无遮挡吃胸膜奶免费看 | 无码人妻久久一区二区三区不卡 | 欧美性生交活xxxxxdddd | 亚洲综合在线一区二区三区 | 无人区乱码一区二区三区 | 日本大香伊一区二区三区 | 精品国产青草久久久久福利 | 午夜丰满少妇性开放视频 | 亚洲成在人网站无码天堂 | 99在线 | 亚洲 | 成人无码视频在线观看网站 | 成人无码视频在线观看网站 | 国产欧美亚洲精品a | 久久久久亚洲精品中文字幕 | 人妻插b视频一区二区三区 | 国产亚洲视频中文字幕97精品 | 日本一卡二卡不卡视频查询 | 久激情内射婷内射蜜桃人妖 | 麻豆成人精品国产免费 | 在线播放亚洲第一字幕 | 香港三级日本三级妇三级 | 中文字幕人成乱码熟女app | 色综合久久久无码中文字幕 | 国产超级va在线观看视频 | 亚洲人成人无码网www国产 | 99精品国产综合久久久久五月天 | 中文字幕精品av一区二区五区 | 国产成人无码av一区二区 | 精品少妇爆乳无码av无码专区 | 亚洲精品欧美二区三区中文字幕 | 蜜桃av抽搐高潮一区二区 | 久精品国产欧美亚洲色aⅴ大片 | 人妻少妇精品无码专区动漫 | 国内丰满熟女出轨videos | 久久久无码中文字幕久... | 亚洲色偷偷偷综合网 | 一本久久a久久精品亚洲 | 久久99精品久久久久婷婷 | 亚洲人交乣女bbw | 熟妇女人妻丰满少妇中文字幕 | 99久久久国产精品无码免费 | 国产无遮挡又黄又爽免费视频 | 人妻尝试又大又粗久久 | 一本久道高清无码视频 | 久久久精品欧美一区二区免费 | 欧美亚洲国产一区二区三区 | 亚洲色欲色欲欲www在线 | 色综合久久网 | 18禁止看的免费污网站 | 熟女俱乐部五十路六十路av | 国产成人综合在线女婷五月99播放 | 强开小婷嫩苞又嫩又紧视频 | 黑人大群体交免费视频 | 国产精品福利视频导航 | 日本丰满熟妇videos | 无码免费一区二区三区 | 亚洲人成影院在线观看 | 国产真实伦对白全集 | 蜜臀av无码人妻精品 | 国产成人av免费观看 | 国产精品第一国产精品 | 亚洲狠狠婷婷综合久久 | 日韩人妻少妇一区二区三区 | 国产精品久免费的黄网站 | 日日摸日日碰夜夜爽av | 国产精品沙发午睡系列 | 欧美丰满熟妇xxxx性ppx人交 | 国产一区二区三区精品视频 | 国产成人综合色在线观看网站 | 99久久久无码国产精品免费 | 国产综合久久久久鬼色 | 久久久精品人妻久久影视 | 真人与拘做受免费视频 | 国产在线无码精品电影网 | 亚洲欧美综合区丁香五月小说 | 97无码免费人妻超级碰碰夜夜 | 精品一区二区三区无码免费视频 | 最新版天堂资源中文官网 | 天天摸天天碰天天添 | 老司机亚洲精品影院无码 | 国产人妻精品一区二区三区不卡 | 国产尤物精品视频 | 国语精品一区二区三区 | 亚洲の无码国产の无码步美 | 亚洲gv猛男gv无码男同 | 亚洲欧美国产精品久久 | 无套内谢老熟女 | 亚洲精品综合一区二区三区在线 | 日欧一片内射va在线影院 | 精品欧美一区二区三区久久久 | 日本精品久久久久中文字幕 | 无遮挡啪啪摇乳动态图 | 一区二区三区乱码在线 | 欧洲 | 日欧一片内射va在线影院 | 国产在线精品一区二区三区直播 | 午夜精品一区二区三区的区别 | 午夜福利试看120秒体验区 | 伊人久久婷婷五月综合97色 | 国语自产偷拍精品视频偷 | 成在人线av无码免费 | 亚洲一区二区三区香蕉 | 午夜福利电影 | 好爽又高潮了毛片免费下载 | 99久久久国产精品无码免费 | 天下第一社区视频www日本 | 色五月丁香五月综合五月 | 久久久久国色av免费观看性色 | 日韩av无码一区二区三区不卡 | 午夜精品久久久久久久久 | 精品一区二区三区波多野结衣 | 自拍偷自拍亚洲精品10p | 婷婷丁香五月天综合东京热 | 人人妻人人澡人人爽欧美精品 | 亚洲精品中文字幕 | 亚洲精品www久久久 | 国产精品久久久一区二区三区 | 国产亚洲精品久久久久久久 | 久久精品人妻少妇一区二区三区 | 理论片87福利理论电影 | 亚洲色大成网站www | 亚洲一区二区三区香蕉 | 国产人妻大战黑人第1集 | 色欲久久久天天天综合网精品 | 色综合久久久无码网中文 | 欧美老妇交乱视频在线观看 | 综合激情五月综合激情五月激情1 | 欧美日本精品一区二区三区 | 国产电影无码午夜在线播放 | 国产精品免费大片 | 正在播放东北夫妻内射 | 超碰97人人做人人爱少妇 | 亚洲毛片av日韩av无码 | 5858s亚洲色大成网站www | 免费人成网站视频在线观看 | 国产乡下妇女做爰 | 双乳奶水饱满少妇呻吟 | 日韩少妇白浆无码系列 | 性欧美大战久久久久久久 | 国产三级久久久精品麻豆三级 | 国产办公室秘书无码精品99 | 丁香花在线影院观看在线播放 | 午夜时刻免费入口 | 久久99国产综合精品 | 扒开双腿疯狂进出爽爽爽视频 | 77777熟女视频在线观看 а天堂中文在线官网 | 在线看片无码永久免费视频 | 久久久久99精品国产片 | 麻豆国产人妻欲求不满谁演的 | 成熟妇人a片免费看网站 | 强开小婷嫩苞又嫩又紧视频 | 国产香蕉尹人综合在线观看 | 欧美精品免费观看二区 | 131美女爱做视频 | 久久天天躁夜夜躁狠狠 | 国产精品无套呻吟在线 | 亚洲一区二区三区含羞草 | 国产日产欧产精品精品app | 精品国产一区av天美传媒 | 国产精品高潮呻吟av久久4虎 | 国产午夜精品一区二区三区嫩草 | 色五月丁香五月综合五月 | 九九久久精品国产免费看小说 | 精品无码一区二区三区爱欲 | 亚洲人成网站色7799 | 最新版天堂资源中文官网 | 日本精品人妻无码77777 天堂一区人妻无码 | 亚洲精品一区二区三区四区五区 | 欧美成人免费全部网站 | 大肉大捧一进一出视频出来呀 | 亚洲人成人无码网www国产 | 亚洲熟妇色xxxxx亚洲 | 思思久久99热只有频精品66 | 曰韩无码二三区中文字幕 | 精品国产一区二区三区四区在线看 | aa片在线观看视频在线播放 | 国内精品久久毛片一区二区 | 国产免费久久精品国产传媒 | 国产亚洲精品精品国产亚洲综合 | 精品少妇爆乳无码av无码专区 | 日本精品少妇一区二区三区 | 国内精品人妻无码久久久影院蜜桃 | 日韩亚洲欧美精品综合 | 丰满人妻精品国产99aⅴ | 疯狂三人交性欧美 | 亚洲人成影院在线无码按摩店 | 少妇人妻av毛片在线看 | 亚洲大尺度无码无码专区 | 精品国产精品久久一区免费式 | 精品欧美一区二区三区久久久 | 亚洲另类伦春色综合小说 | 久久综合久久自在自线精品自 | 国产精品久久久久久无码 | 欧美国产日韩久久mv | 久久国语露脸国产精品电影 | 免费乱码人妻系列无码专区 | 国产精品久久久久久亚洲毛片 | 男人的天堂av网站 | 国产成人亚洲综合无码 | 日本一卡2卡3卡四卡精品网站 | 蜜桃视频插满18在线观看 | 国产免费无码一区二区视频 | 亚洲狠狠婷婷综合久久 | 又湿又紧又大又爽a视频国产 | 婷婷丁香六月激情综合啪 | 久久人人97超碰a片精品 | 麻豆av传媒蜜桃天美传媒 | 无码乱肉视频免费大全合集 | 熟女少妇在线视频播放 | 无码av免费一区二区三区试看 | 5858s亚洲色大成网站www | 久久亚洲中文字幕无码 | 帮老师解开蕾丝奶罩吸乳网站 | 中文亚洲成a人片在线观看 | 日本护士毛茸茸高潮 | 国产激情艳情在线看视频 | 国产在线aaa片一区二区99 | 欧美激情一区二区三区成人 | 精品国产乱码久久久久乱码 | 人妻少妇精品无码专区动漫 | www国产亚洲精品久久网站 | 亚洲成av人片天堂网无码】 | 中文字幕乱码亚洲无线三区 | 国内精品久久久久久中文字幕 | 欧美 丝袜 自拍 制服 另类 | 国产亚洲精品精品国产亚洲综合 | 国产精品沙发午睡系列 | 亚洲一区二区三区播放 | 东京无码熟妇人妻av在线网址 | 精品无码国产自产拍在线观看蜜 | 免费观看的无遮挡av | 无码人妻出轨黑人中文字幕 | 日本精品少妇一区二区三区 | 国产成人综合色在线观看网站 | 美女黄网站人色视频免费国产 | 亚洲啪av永久无码精品放毛片 | 乱人伦中文视频在线观看 | 久久久久免费看成人影片 | 97久久国产亚洲精品超碰热 | 久久99精品久久久久久动态图 | 又大又紧又粉嫩18p少妇 | 亚洲色偷偷偷综合网 | 国产香蕉尹人视频在线 | 一本加勒比波多野结衣 | 国产小呦泬泬99精品 | 天下第一社区视频www日本 | 国产热a欧美热a在线视频 | 国产亚洲精品久久久久久久久动漫 | 国产精品99久久精品爆乳 | 国产偷抇久久精品a片69 | 色婷婷综合激情综在线播放 | 欧洲vodafone精品性 | 成 人 免费观看网站 | 亚洲一区二区三区香蕉 | 亚洲国产欧美日韩精品一区二区三区 | 国产舌乚八伦偷品w中 | 夜夜夜高潮夜夜爽夜夜爰爰 | 精品国产乱码久久久久乱码 | 亚洲男人av香蕉爽爽爽爽 | 国产成人一区二区三区别 | 国产精品亚洲а∨无码播放麻豆 | 少妇性荡欲午夜性开放视频剧场 | 午夜性刺激在线视频免费 | 老司机亚洲精品影院 | 国产99久久精品一区二区 | 久久国产精品偷任你爽任你 | 一本色道久久综合狠狠躁 | 狠狠色丁香久久婷婷综合五月 | 嫩b人妻精品一区二区三区 | 国产精品久久久久无码av色戒 | 99久久精品国产一区二区蜜芽 | 国产性生大片免费观看性 | 成人免费视频视频在线观看 免费 | 久久午夜无码鲁丝片 | 久久久久成人片免费观看蜜芽 | 呦交小u女精品视频 | 色婷婷欧美在线播放内射 | 99久久99久久免费精品蜜桃 | 双乳奶水饱满少妇呻吟 | 亲嘴扒胸摸屁股激烈网站 | 国产精品99久久精品爆乳 | 夫妻免费无码v看片 | 欧美野外疯狂做受xxxx高潮 | 日本熟妇人妻xxxxx人hd | 久久久av男人的天堂 | 麻豆国产丝袜白领秘书在线观看 | 久久精品女人的天堂av | 亚洲男人av天堂午夜在 | 四虎国产精品一区二区 | 国产黄在线观看免费观看不卡 | 日本饥渴人妻欲求不满 | 日韩精品a片一区二区三区妖精 | 精品欧美一区二区三区久久久 | 男女爱爱好爽视频免费看 | 久久天天躁狠狠躁夜夜免费观看 | 国产深夜福利视频在线 | 成人三级无码视频在线观看 | av无码不卡在线观看免费 | 51国偷自产一区二区三区 | 精品 日韩 国产 欧美 视频 | 国产亚洲tv在线观看 | 鲁鲁鲁爽爽爽在线视频观看 | 人妻互换免费中文字幕 | 少妇性俱乐部纵欲狂欢电影 | 国产成人无码av一区二区 | 97久久国产亚洲精品超碰热 | 亚洲热妇无码av在线播放 | 欧美一区二区三区视频在线观看 | 亚洲日本va午夜在线电影 | 又大又硬又黄的免费视频 | 夜夜躁日日躁狠狠久久av | 久久久久久九九精品久 | 无套内谢的新婚少妇国语播放 | 黑人粗大猛烈进出高潮视频 | 国产精品嫩草久久久久 | 亚洲а∨天堂久久精品2021 | 粉嫩少妇内射浓精videos | 国产精品99久久精品爆乳 | 日日橹狠狠爱欧美视频 | 亚洲精品国产精品乱码不卡 | 纯爱无遮挡h肉动漫在线播放 | 国产精品久久久久久亚洲影视内衣 | 色欲久久久天天天综合网精品 | 77777熟女视频在线观看 а天堂中文在线官网 | v一区无码内射国产 | 无码一区二区三区在线 | 露脸叫床粗话东北少妇 | 色婷婷综合中文久久一本 | 麻豆国产人妻欲求不满 | 国产卡一卡二卡三 | 无人区乱码一区二区三区 | 精品无码一区二区三区爱欲 | 中文字幕乱码人妻二区三区 | 国产免费观看黄av片 | 色综合久久88色综合天天 | 久久无码专区国产精品s | 国产熟妇高潮叫床视频播放 | 学生妹亚洲一区二区 | 曰本女人与公拘交酡免费视频 | 日韩欧美成人免费观看 | 亚洲国产精品无码久久久久高潮 | 国产精品无码成人午夜电影 | 少妇高潮一区二区三区99 | 欧美日韩一区二区免费视频 | 国产一区二区三区日韩精品 | 偷窥日本少妇撒尿chinese | 骚片av蜜桃精品一区 | 亚洲一区二区三区无码久久 | 四虎永久在线精品免费网址 | 国产69精品久久久久app下载 | 成人免费视频视频在线观看 免费 | 久久亚洲日韩精品一区二区三区 | 97夜夜澡人人爽人人喊中国片 | 婷婷色婷婷开心五月四房播播 | 亚洲精品一区二区三区大桥未久 | 精品人妻人人做人人爽 | 无码一区二区三区在线观看 | 久9re热视频这里只有精品 | 精品久久久久久亚洲精品 | 高清国产亚洲精品自在久久 | 少妇厨房愉情理9仑片视频 | 色欲综合久久中文字幕网 | 色 综合 欧美 亚洲 国产 | 狂野欧美性猛交免费视频 | 亚洲国产精品无码久久久久高潮 | 久久99精品国产.久久久久 | 人人妻人人澡人人爽欧美一区九九 | 18黄暴禁片在线观看 | 沈阳熟女露脸对白视频 | 亚洲欧洲无卡二区视頻 | 久久精品国产99久久6动漫 | 曰韩少妇内射免费播放 | 三上悠亚人妻中文字幕在线 | 亚拍精品一区二区三区探花 | 18无码粉嫩小泬无套在线观看 | 亚洲毛片av日韩av无码 | 亚洲综合精品香蕉久久网 | 亚洲日韩一区二区三区 | 欧美成人午夜精品久久久 | 在线欧美精品一区二区三区 | 精品国产av色一区二区深夜久久 | 国产成人综合色在线观看网站 | 精品无码av一区二区三区 | 婷婷色婷婷开心五月四房播播 | 一本色道久久综合亚洲精品不卡 | 精品夜夜澡人妻无码av蜜桃 | 无码av免费一区二区三区试看 | a在线亚洲男人的天堂 | 天堂一区人妻无码 | 国产精品久久精品三级 | 成人免费视频视频在线观看 免费 | 国产精品嫩草久久久久 | 秋霞特色aa大片 | 大地资源中文第3页 | 亚洲国产av美女网站 | 国产高清av在线播放 | 正在播放老肥熟妇露脸 | 中文字幕乱码人妻无码久久 | 日日橹狠狠爱欧美视频 | 色欲久久久天天天综合网精品 | 欧洲精品码一区二区三区免费看 | 色综合视频一区二区三区 | 欧美性猛交内射兽交老熟妇 | 国产精品二区一区二区aⅴ污介绍 | 毛片内射-百度 | 人人妻人人藻人人爽欧美一区 | 乱人伦中文视频在线观看 | 无码一区二区三区在线 | 最近中文2019字幕第二页 | 丰满人妻精品国产99aⅴ | 曰本女人与公拘交酡免费视频 | 领导边摸边吃奶边做爽在线观看 | 欧美xxxxx精品 | 色婷婷av一区二区三区之红樱桃 | 麻豆果冻传媒2021精品传媒一区下载 | 国产成人一区二区三区在线观看 | 中文字幕乱妇无码av在线 | 少妇人妻av毛片在线看 | 国产熟女一区二区三区四区五区 | 国产精品a成v人在线播放 | 国产极品美女高潮无套在线观看 | 无码人妻丰满熟妇区五十路百度 | 四虎影视成人永久免费观看视频 | 精品少妇爆乳无码av无码专区 | 水蜜桃色314在线观看 | 偷窥日本少妇撒尿chinese | 人人妻在人人 | 国产精品亚洲五月天高清 | www成人国产高清内射 | 欧美丰满熟妇xxxx性ppx人交 | 亚洲日韩一区二区三区 | 婷婷色婷婷开心五月四房播播 | 天海翼激烈高潮到腰振不止 | 亚洲中文字幕乱码av波多ji | 中文字幕人成乱码熟女app | 黄网在线观看免费网站 | 少妇高潮一区二区三区99 | 国产区女主播在线观看 | 日本在线高清不卡免费播放 | 亚洲欧美国产精品久久 | 全球成人中文在线 | 鲁一鲁av2019在线 | 国产内射爽爽大片视频社区在线 | 国产精品美女久久久久av爽李琼 | 久久国产精品偷任你爽任你 | 久久精品中文字幕大胸 | 99国产欧美久久久精品 | 久久99国产综合精品 | 国产精品久久久一区二区三区 | 性色av无码免费一区二区三区 | 国产后入清纯学生妹 | 国产亚av手机在线观看 | 高清无码午夜福利视频 | 日韩精品乱码av一区二区 | 中文字幕+乱码+中文字幕一区 | 色综合久久久无码网中文 | 亚洲日本一区二区三区在线 | 免费乱码人妻系列无码专区 | 人妻无码久久精品人妻 | 国产麻豆精品精东影业av网站 | 无套内谢老熟女 | 久久久久久久久888 | 欧美野外疯狂做受xxxx高潮 | 日本丰满熟妇videos | 欧美老熟妇乱xxxxx | 亚洲午夜无码久久 | 久久精品人妻少妇一区二区三区 | 成人无码视频免费播放 | 内射巨臀欧美在线视频 | 国产xxx69麻豆国语对白 | 国产莉萝无码av在线播放 | v一区无码内射国产 | 欧美 丝袜 自拍 制服 另类 | 最近免费中文字幕中文高清百度 | 久久精品国产一区二区三区肥胖 | 日本一卡二卡不卡视频查询 | 中文字幕无码热在线视频 | 久久久久人妻一区精品色欧美 | 欧美一区二区三区 | 亚洲一区二区三区含羞草 | 麻豆av传媒蜜桃天美传媒 | 六月丁香婷婷色狠狠久久 | 午夜时刻免费入口 | 色综合久久久久综合一本到桃花网 | 精品无码一区二区三区的天堂 | √8天堂资源地址中文在线 | 麻豆国产丝袜白领秘书在线观看 | 一本久久伊人热热精品中文字幕 | av小次郎收藏 | 国产精品无码永久免费888 | 亚洲国产精品久久久天堂 | 国产绳艺sm调教室论坛 | 东京热无码av男人的天堂 | 国产成人精品久久亚洲高清不卡 | 人人澡人人妻人人爽人人蜜桃 | 日本精品高清一区二区 | 亚洲精品美女久久久久久久 | 3d动漫精品啪啪一区二区中 | 久久亚洲日韩精品一区二区三区 | 国产网红无码精品视频 | 婷婷丁香六月激情综合啪 | 女人被男人躁得好爽免费视频 | 丰满人妻一区二区三区免费视频 | 亚洲 激情 小说 另类 欧美 | 帮老师解开蕾丝奶罩吸乳网站 | 日本乱偷人妻中文字幕 | 国产亚洲欧美在线专区 | 丝袜美腿亚洲一区二区 | 国内精品人妻无码久久久影院 | 鲁鲁鲁爽爽爽在线视频观看 | 国精品人妻无码一区二区三区蜜柚 | 国产精品人妻一区二区三区四 | 久久亚洲国产成人精品性色 | 九月婷婷人人澡人人添人人爽 | 九九在线中文字幕无码 | 欧洲熟妇色 欧美 | 人人妻人人澡人人爽欧美精品 | 乱码午夜-极国产极内射 | 国产成人无码午夜视频在线观看 | 黑森林福利视频导航 | 激情亚洲一区国产精品 | 日日摸天天摸爽爽狠狠97 | 天天躁日日躁狠狠躁免费麻豆 | 色欲久久久天天天综合网精品 | 国产一区二区三区四区五区加勒比 | 人人妻人人澡人人爽人人精品浪潮 | 欧美日韩在线亚洲综合国产人 | 国产亚洲精品久久久久久久 | 国产另类ts人妖一区二区 | 波多野结衣av一区二区全免费观看 | 3d动漫精品啪啪一区二区中 | 成人性做爰aaa片免费看 | 男女猛烈xx00免费视频试看 | 色偷偷人人澡人人爽人人模 | 高潮喷水的毛片 | 一个人免费观看的www视频 | 国产精品亚洲а∨无码播放麻豆 | 久久99热只有频精品8 | 无码免费一区二区三区 | 国产精品久免费的黄网站 | 国产精品无码一区二区三区不卡 | 色综合久久久无码中文字幕 | 国产三级精品三级男人的天堂 | 夜夜高潮次次欢爽av女 | 亚洲欧美中文字幕5发布 | 成年美女黄网站色大免费全看 | 无码国产色欲xxxxx视频 | 四虎影视成人永久免费观看视频 | 女人被男人爽到呻吟的视频 | 欧美日韩综合一区二区三区 | 99国产精品白浆在线观看免费 | 色欲综合久久中文字幕网 | 98国产精品综合一区二区三区 | 国产九九九九九九九a片 | 国产亚洲精品久久久久久大师 | 97精品国产97久久久久久免费 | 午夜理论片yy44880影院 | 一本无码人妻在中文字幕免费 | 午夜精品久久久久久久久 | 搡女人真爽免费视频大全 | 99国产精品白浆在线观看免费 | 国产精品第一国产精品 | 国精品人妻无码一区二区三区蜜柚 | 亚洲无人区一区二区三区 | 丰腴饱满的极品熟妇 | 亚洲国产午夜精品理论片 | 丰满护士巨好爽好大乳 | 好爽又高潮了毛片免费下载 | 久久亚洲中文字幕精品一区 | 俄罗斯老熟妇色xxxx | 欧洲精品码一区二区三区免费看 | 亚洲中文字幕无码中文字在线 | 无码av免费一区二区三区试看 | 天天拍夜夜添久久精品大 | 亚洲国产精品成人久久蜜臀 | 国内老熟妇对白xxxxhd | 精品国精品国产自在久国产87 | 久久久久99精品国产片 | 国产香蕉97碰碰久久人人 | 欧美精品一区二区精品久久 | 18无码粉嫩小泬无套在线观看 | 午夜嘿嘿嘿影院 | 欧美日韩亚洲国产精品 | 精品无码国产一区二区三区av | 亚洲精品一区二区三区在线观看 | 性欧美大战久久久久久久 | 久久亚洲精品中文字幕无男同 | 久久99精品久久久久久动态图 | 久久午夜夜伦鲁鲁片无码免费 | 伊在人天堂亚洲香蕉精品区 | 欧美乱妇无乱码大黄a片 | 在线精品亚洲一区二区 | 久久久精品欧美一区二区免费 | www国产亚洲精品久久久日本 | 国产成人无码一二三区视频 | 天堂亚洲2017在线观看 | 天天摸天天透天天添 | 日产精品高潮呻吟av久久 | 欧洲极品少妇 | 日本精品少妇一区二区三区 | 久久久精品欧美一区二区免费 | 玩弄少妇高潮ⅹxxxyw | 中文久久乱码一区二区 | 亚洲中文无码av永久不收费 | 蜜臀av无码人妻精品 | 国产综合色产在线精品 | 久久综合久久自在自线精品自 | 未满小14洗澡无码视频网站 | а天堂中文在线官网 | 樱花草在线社区www | 丁香花在线影院观看在线播放 | 久久综合激激的五月天 | 麻豆精产国品 | 中文字幕日产无线码一区 | 精品国产一区二区三区四区在线看 | 又大又硬又黄的免费视频 | 欧美zoozzooz性欧美 | 无码午夜成人1000部免费视频 | 性色欲网站人妻丰满中文久久不卡 | 欧美国产日韩亚洲中文 | 人妻中文无码久热丝袜 | 国产人妻精品一区二区三区不卡 | 国产免费无码一区二区视频 | 伊人久久大香线蕉av一区二区 | 水蜜桃亚洲一二三四在线 | 国产在线一区二区三区四区五区 | 色一情一乱一伦 | 亚洲中文字幕在线无码一区二区 | 国产三级精品三级男人的天堂 | 波多野42部无码喷潮在线 | 大屁股大乳丰满人妻 | 久久久久久久人妻无码中文字幕爆 | 最新国产麻豆aⅴ精品无码 | 麻豆精产国品 | 又大又黄又粗又爽的免费视频 | 无码中文字幕色专区 | 国产肉丝袜在线观看 | 国产成人无码区免费内射一片色欲 | 国产精品-区区久久久狼 | 精品亚洲成av人在线观看 | 精品国产一区二区三区四区 | 内射后入在线观看一区 | 国产手机在线αⅴ片无码观看 | 国产精品va在线观看无码 | 亚洲国产精品久久人人爱 | 久9re热视频这里只有精品 | 在线精品国产一区二区三区 | 国产成人精品视频ⅴa片软件竹菊 | 色综合天天综合狠狠爱 | 欧美zoozzooz性欧美 | 日本熟妇人妻xxxxx人hd | 日韩欧美中文字幕公布 | 3d动漫精品啪啪一区二区中 | 久久精品视频在线看15 | 国产精品久久久久7777 | 精品国偷自产在线视频 | 精品国产一区二区三区四区在线看 | 免费乱码人妻系列无码专区 | 无人区乱码一区二区三区 | 国产精品高潮呻吟av久久4虎 | 99er热精品视频 | 国精产品一区二区三区 | 男女超爽视频免费播放 | 中文字幕精品av一区二区五区 | 又粗又大又硬毛片免费看 | 亚洲精品国产精品乱码不卡 | 十八禁视频网站在线观看 | 精品无码一区二区三区的天堂 | 亚洲一区二区三区国产精华液 | 久久精品人人做人人综合 | 亚洲一区二区观看播放 | 精品成人av一区二区三区 | 国产猛烈高潮尖叫视频免费 | 国产亚洲精品久久久久久久久动漫 | 欧洲极品少妇 | 性欧美熟妇videofreesex | 久久亚洲中文字幕精品一区 | 老司机亚洲精品影院无码 | 大肉大捧一进一出好爽视频 | 久久久久久a亚洲欧洲av冫 | 好屌草这里只有精品 | 欧美人与禽zoz0性伦交 | 国产亚洲欧美日韩亚洲中文色 | 午夜丰满少妇性开放视频 | 国产亚洲欧美日韩亚洲中文色 | 伊人久久大香线蕉午夜 | 欧美老人巨大xxxx做受 | 国产特级毛片aaaaaaa高清 | 成人欧美一区二区三区黑人免费 | 日韩人妻少妇一区二区三区 | 亚洲а∨天堂久久精品2021 | 欧美乱妇无乱码大黄a片 | 欧美变态另类xxxx | 国产香蕉97碰碰久久人人 | 久久精品国产99久久6动漫 | 国产亚洲精品久久久闺蜜 | 无码人中文字幕 | 国产精品久久久一区二区三区 | 国产人妻精品午夜福利免费 | 亚洲小说春色综合另类 | 亚洲s色大片在线观看 | 玩弄人妻少妇500系列视频 | 色综合久久久久综合一本到桃花网 | 欧美放荡的少妇 | 亚洲精品久久久久avwww潮水 | 欧美日韩一区二区综合 | 人人妻人人澡人人爽人人精品浪潮 | 女人和拘做爰正片视频 | 18禁黄网站男男禁片免费观看 | 自拍偷自拍亚洲精品被多人伦好爽 | 国产精品嫩草久久久久 | 亚洲精品一区二区三区大桥未久 | 狠狠色欧美亚洲狠狠色www | 中文字幕无码日韩欧毛 | 黑人巨大精品欧美黑寡妇 | 亚洲成a人一区二区三区 | 最新国产麻豆aⅴ精品无码 | 国产乱人伦av在线无码 | 日韩少妇内射免费播放 | 亚洲成av人片在线观看无码不卡 | 在线观看国产午夜福利片 | 丰满少妇女裸体bbw | 国产精品亚洲综合色区韩国 | 成人女人看片免费视频放人 | 2020久久超碰国产精品最新 | 少妇高潮喷潮久久久影院 | 丝袜 中出 制服 人妻 美腿 | 免费无码午夜福利片69 | 老熟妇仑乱视频一区二区 | 少妇厨房愉情理9仑片视频 | 98国产精品综合一区二区三区 | 久久国产精品二国产精品 | 99国产精品白浆在线观看免费 | 国色天香社区在线视频 | 中文字幕乱码亚洲无线三区 | 国产另类ts人妖一区二区 | 国产免费观看黄av片 | аⅴ资源天堂资源库在线 | 亚洲熟妇自偷自拍另类 | 成人亚洲精品久久久久 | 成人免费视频视频在线观看 免费 | 在教室伦流澡到高潮hnp视频 | 中文字幕乱码人妻二区三区 | 亚洲欧美日韩国产精品一区二区 | 无码吃奶揉捏奶头高潮视频 | 国产欧美亚洲精品a | 日日躁夜夜躁狠狠躁 | 久久精品女人的天堂av | 伊在人天堂亚洲香蕉精品区 | 乱人伦人妻中文字幕无码久久网 | 日本一区二区三区免费高清 | 99re在线播放 | 日韩欧美中文字幕公布 | 综合激情五月综合激情五月激情1 | 国产乱码精品一品二品 | 露脸叫床粗话东北少妇 | 四虎影视成人永久免费观看视频 | 国产69精品久久久久app下载 | 精品国精品国产自在久国产87 | 国产精品久久久久影院嫩草 | 色综合久久久久综合一本到桃花网 | 色爱情人网站 | 中文字幕亚洲情99在线 | 亚洲精品一区二区三区四区五区 | 色综合久久中文娱乐网 | 国内老熟妇对白xxxxhd | 欧洲熟妇色 欧美 | 久久久无码中文字幕久... | 国产成人无码av片在线观看不卡 | 国产高潮视频在线观看 | 精品偷自拍另类在线观看 | 国产无遮挡又黄又爽免费视频 | 四虎国产精品一区二区 | 思思久久99热只有频精品66 | 一二三四社区在线中文视频 | 性色av无码免费一区二区三区 | 亚洲综合无码一区二区三区 | 人妻天天爽夜夜爽一区二区 | 久久人妻内射无码一区三区 | 久久人人爽人人爽人人片ⅴ | 国产人妻久久精品二区三区老狼 | 欧美国产亚洲日韩在线二区 | 久久亚洲日韩精品一区二区三区 | 亚洲欧洲中文日韩av乱码 | 国产成人人人97超碰超爽8 | 久久久久se色偷偷亚洲精品av | 久久亚洲a片com人成 | 精品国产成人一区二区三区 | 亚洲成av人片在线观看无码不卡 | 男女性色大片免费网站 | 300部国产真实乱 | 亚洲日韩乱码中文无码蜜桃臀网站 | 76少妇精品导航 | 色噜噜亚洲男人的天堂 | 日本一卡2卡3卡4卡无卡免费网站 国产一区二区三区影院 | 奇米影视7777久久精品人人爽 | √天堂中文官网8在线 | 国产精品高潮呻吟av久久4虎 | 国产精品亚洲五月天高清 | 狠狠色欧美亚洲狠狠色www | 亚洲熟妇自偷自拍另类 | 图片区 小说区 区 亚洲五月 | 中文精品久久久久人妻不卡 | 国内精品人妻无码久久久影院蜜桃 | 国产精品久久久av久久久 | 天堂亚洲2017在线观看 | 色五月丁香五月综合五月 | 国产亚洲人成在线播放 | 少妇愉情理伦片bd | www国产亚洲精品久久久日本 | 亚洲啪av永久无码精品放毛片 | 国产在线一区二区三区四区五区 | 国产性生交xxxxx无码 | 性欧美疯狂xxxxbbbb | 日韩欧美群交p片內射中文 | 精品一二三区久久aaa片 | 亚洲欧美日韩成人高清在线一区 | 水蜜桃亚洲一二三四在线 | 国产卡一卡二卡三 | 国产成人精品视频ⅴa片软件竹菊 | 成人免费视频一区二区 | 精品国产一区二区三区av 性色 | 亚洲一区av无码专区在线观看 | 丝袜 中出 制服 人妻 美腿 | 欧美成人午夜精品久久久 | 国产精品成人av在线观看 | 国语自产偷拍精品视频偷 | 东京热一精品无码av | www一区二区www免费 | 日日天日日夜日日摸 | 丁香花在线影院观看在线播放 | 亚洲精品国偷拍自产在线麻豆 | 亚洲欧洲中文日韩av乱码 | 国产亚洲精品久久久久久大师 | 乱中年女人伦av三区 | 亚洲熟妇色xxxxx欧美老妇y | 国内揄拍国内精品人妻 | 日韩少妇白浆无码系列 | 国产成人精品无码播放 | 午夜无码区在线观看 | 97se亚洲精品一区 | 熟女少妇人妻中文字幕 | 日本va欧美va欧美va精品 | 久热国产vs视频在线观看 | 性欧美疯狂xxxxbbbb | 久热国产vs视频在线观看 | 欧美喷潮久久久xxxxx | 97夜夜澡人人爽人人喊中国片 | 无码av最新清无码专区吞精 | 日本饥渴人妻欲求不满 | 国产精品久久国产三级国 | 亚洲一区二区三区在线观看网站 | 国产亚洲精品久久久闺蜜 | 全黄性性激高免费视频 | 日本护士毛茸茸高潮 | 亚洲国产成人av在线观看 | 国产精品对白交换视频 | 强伦人妻一区二区三区视频18 | 中文字幕人妻无码一区二区三区 | 久久久亚洲欧洲日产国码αv | 欧美精品无码一区二区三区 | 国产内射老熟女aaaa | 日本饥渴人妻欲求不满 | 99久久人妻精品免费二区 | 性色欲网站人妻丰满中文久久不卡 | 给我免费的视频在线观看 | 亚洲 日韩 欧美 成人 在线观看 | 内射巨臀欧美在线视频 | ass日本丰满熟妇pics | 在线看片无码永久免费视频 |