统计学习笔记(3)——k近邻法与kd树
在使用k近鄰法進行分類時,對新的實例,根據其k個最近鄰的訓練實例的類別,通過多數表決的方式進行預測。由于k近鄰模型的特征空間一般是n維實數向量,所以距離的計算通常采用的是歐式距離。關鍵的是k值的選取,如果k值太小就意味著整體模型變得復雜,容易發生過擬合,即如果鄰近的實例點恰巧是噪聲,預測就會出錯,極端的情況是k=1,稱為最近鄰算法,對于待預測點x,與x最近的點決定了x的類別。k值得增大意味著整體的模型變得簡單,極端的情況是k=N,那么無論輸入實例是什么,都簡單地預測它屬于訓練集中最多的類,這樣的模型過于簡單。經驗是,k值一般去一個比較小的值,通常采取交叉驗證的方法來選取最優的k值。
? ? ? ?實現k近鄰法時,主要考慮的問題是如何對訓練數據進行快速k近鄰搜索,這點在特征空間的維數大以及訓練數據容量大時尤其重要。k近鄰法的最簡單實現是線性掃描,這時要計算輸入實例與每一個訓練實例的距離,當訓練集很大時,計算非常耗時,這種方法是不可行的。為了提高k近鄰搜索的效率,可以考慮使用特殊的結構存儲訓練數據,以減少計算距離的次數。具體方法有很多,這里介紹kd樹方法。
1.實例
? ? ? ?先以一個簡單直觀的實例來介紹k-d樹算法。假設有6個二維數據點{(2,3),(5,4),(9,6),(4,7),(8,1),(7,2)},數據點位于二維空間內(如圖2中黑點所示)。k-d樹算法就是要確定圖2中這些分割空間的分割線(多維空間即為分割平面,一般為超平面)。下面就要通過一步步展示k-d樹是如何確定這些分割線的。
? ? ? ?k-d樹算法可以分為兩大部分,一部分是有關k-d樹本身這種數據結構建立的算法,另一部分是在建立的k-d樹上如何進行最鄰近查找的算法。
2.構造kd樹
? ? ? ? kd樹是一種對k維空間中的實例點進行存儲以便對其進行快速搜索的樹形數據結構。kd樹是二叉樹,表示對k維空間的一個劃分。構造kd樹相當于不斷地用垂直于坐標軸的超平面將k維空間進行切分,構成一系列的k維超矩形區域。kd樹的每一個節點對應于一個k維超矩形區域。k-d樹是一個二叉樹,每個節點表示一個空間范圍。下表給出的是k-d樹每個節點中主要包含的數據結構。
? ? ? ? ?從上面對k-d樹節點的數據類型的描述可以看出構建k-d樹是一個逐級展開的遞歸過程。下面給出的是構建k-d樹的偽碼。
? ? ? ?以上述舉的實例來看,過程如下:
? ? ? ? 由于此例簡單,數據維度只有2維,所以可以簡單地給x,y兩個方向軸編號為0,1,也即split={0,1}。
? ? ? ? (1)確定split域的首先該取的值。分別計算x,y方向上數據的方差得知x方向上的方差最大,所以split域值首先取0,也就是x軸方向;
? ? ? ? ?(2)確定Node-data的域值。根據x軸方向的值2,5,9,4,8,7排序選出中值為7,所以Node-data = (7,2)。這樣,該節點的分割超平面就是通過(7,2)并垂直于split = 0(x軸)的直線x = 7;
? ? ? ? ?(3)確定左子空間和右子空間。分割超平面x = 7將整個空間分為兩部分,如下圖所示。x <= 7的部分為左子空間,包含3個節點{(2,3),(5,4),(4,7)};另一部分為右子空間,包含2個節點{(9,6),(8,1)}。
? ? ? ? ?如算法所述,k-d樹的構建是一個遞歸的過程。然后對左子空間和右子空間內的數據重復根節點的過程就可以得到下一級子節點(5,4)和(9,6)(也就是左右子空間的'根'節點),同時將空間和數據集進一步細分。如此反復直到空間中只包含一個數據點,如下圖所示。最后生成的k-d樹如下圖所示。
3.搜索kd樹
? ? ? ? 在k-d樹中進行數據的查找也是特征匹配的重要環節,其目的是檢索在k-d樹中與查詢點距離最近的數據點。這里先以一個簡單的實例來描述最鄰近查找的基本思路。
? ? ? ? 星號表示要查詢的點(2.1,3.1)。通過二叉搜索,順著搜索路徑很快就能找到最鄰近的近似點,也就是葉子節點(2,3)。而找到的葉子節點并不一定就是最鄰近的,最鄰近肯定距離查詢點更近,應該位于以查詢點為圓心且通過葉子節點的圓域內。為了找到真正的最近鄰,還需要進行'回溯'操作:算法沿搜索路徑反向查找是否有距離查詢點更近的數據點。此例中先從(7,2)點開始進行二叉查找,然后到達(5,4),最后到達(2,3),此時搜索路徑中的節點為小于(7,2)和(5,4),大于(2,3),首先以(2,3)作為當前最近鄰點,計算其到查詢點(2.1,3.1)的距離為0.1414,然后回溯到其父節點(5,4),并判斷在該父節點的其他子節點空間中是否有距離查詢點更近的數據點。以(2.1,3.1)為圓心,以0.1414為半徑畫圓,如下圖所示。發現該圓并不和超平面y = 4交割,因此不用進入(5,4)節點右子空間中去搜索。
? ? ? ? ?再回溯到(7,2),以(2.1,3.1)為圓心,以0.1414為半徑的圓更不會與x = 7超平面交割,因此不用進入(7,2)右子空間進行查找。至此,搜索路徑中的節點已經全部回溯完,結束整個搜索,返回最近鄰點(2,3),最近距離為0.1414。
? ? ? ? ? 一個復雜點了例子如查找點為(2,4.5)。同樣先進行二叉查找,先從(7,2)查找到(5,4)節點,在進行查找時是由y = 4為分割超平面的,由于查找點為y值為4.5,因此進入右子空間查找到(4,7),形成搜索路徑<(7,2),(5,4),(4,7)>,取(4,7)為當前最近鄰點,計算其與目標查找點的距離為3.202。然后回溯到(5,4),計算其與查找點之間的距離為3.041。以(2,4.5)為圓心,以3.041為半徑作圓,如下圖左所示。可見該圓和y = 4超平面交割,所以需要進入(5,4)左子空間進行查找。此時需將(2,3)節點加入搜索路徑中得<(7,2),(2,3)>。回溯至(2,3)葉子節點,(2,3)距離(2,4.5)比(5,4)要近,所以最近鄰點更新為(2,3),最近距離更新為1.5。回溯至(7,2),以(2,4.5)為圓心1.5為半徑作圓,并不和x = 7分割超平面交割,如下圖右所示。至此,搜索路徑回溯完。返回最近鄰點(2,3),最近距離1.5。? ? ? ?k-d樹查詢算法的偽代碼如下所示。
[cpp]?view plaincopy? ? ? ?當維數較大時,直接利用k-d樹快速檢索的性能急劇下降。假設數據集的維數為D,一般來說要求數據的規模N滿足條件:N遠大于2的D次方,才能達到高效的搜索。
參考:
http://www.cnblogs.com/eyeszjwang/articles/2429382.html總結
以上是生活随笔為你收集整理的统计学习笔记(3)——k近邻法与kd树的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 统计学习笔记(2)——感知机模型
- 下一篇: 统计学习笔记(4)——朴素贝叶斯法