深度学习教程 TensorFlow and Deep Learning Tutorials
生活随笔
收集整理的這篇文章主要介紹了
深度学习教程 TensorFlow and Deep Learning Tutorials
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
Google's Deep Learning Tutorials
- TensorFlow Official Deep Learning Tutorial?[中文].
- MLP with Dropout?TensorFlow?[中文]?TensorLayer?[中文]
- Autoencoder?TensorLayer?[中文]
- Convolutional Neural Network?TensorFlow?[中文]?TensorLayer?[中文]
- Recurrent Neural Network?TensorFlow?[中文]?TensorLayer?[中文]
- Deep Reinforcement Learning?TensorLayer?[中文]
- Sequence to Sequence?TensorFlow?TensorLayer[中文]
- Word Embedding?TensorFlow?[中文]?TensorLayer?[中文]
Deep Learning Reading List
- MIT Deep Learning Book
- Karpathy Blog
- Stanford UFLDL Tutorials
- Colah's Blog - Word Embedding?[中文]
- Colah's Blog - Understand LSTN?[門函數]
Tutorial index
0 - Prerequisite
- Introduction to Machine Learning (notebook)
- Introduction to MNIST Dataset (notebook)
1 - Introduction
- Hello World (notebook) (code)
- Basic Operations (notebook) (code)
2 - Basic Models
- Nearest Neighbor (notebook) (code)
- Linear Regression (notebook) (code)
- Logistic Regression (notebook) (code)
3 - Neural Networks
- Multilayer Perceptron (notebook) (code)
- Convolutional Neural Network (notebook) (code)
- Recurrent Neural Network (LSTM) (notebook) (code)
- Bidirectional Recurrent Neural Network (LSTM) (notebook) (code)
- Dynamic Recurrent Neural Network (LSTM) (code)
- AutoEncoder (notebook) (code)
4 - Utilities
- Save and Restore a model (notebook) (code)
- Tensorboard - Graph and loss visualization (notebook) (code)
- Tensorboard - Advanced visualization (code)
5 - Multi GPU
- Basic Operations on multi-GPU (notebook) (code)
Dataset
Some examples require MNIST dataset for training and testing. Don't worry, this dataset will automatically be downloaded when running examples (with input_data.py). MNIST is a database of handwritten digits, for a quick description of that dataset, you can check?this notebook.
Official Website:?http://yann.lecun.com/exdb/mnist/
Selected Repositories
- jtoy/awesome-tensorflow
- nlintz/TensorFlow-Tutoirals
- adatao/tensorspark
- ry/tensorflow-resnet
Tricks
- Tricks to use TensorLayer
Examples
Basics
- Multi-layer perceptron (MNIST). A multi-layer perceptron implementation for MNIST classification task, see?tutorial_mnist_simple.py?here.
Computer Vision
- Denoising Autoencoder (MNIST). A multi-layer perceptron implementation for MNIST classification task, see?tutorial_mnist.py?here.
- Stacked Denoising Autoencoder and Fine-Tuning (MNIST). A multi-layer perceptron implementation for MNIST classification task, see?tutorial_mnist.py?here.
- Convolutional Network (MNIST). A Convolutional neural network implementation for classifying MNIST dataset, see?tutorial_mnist.py?here.
- Convolutional Network (CIFAR-10). A Convolutional neural network implementation for classifying CIFAR-10 dataset, see?tutorial_cifar10.py?here.
- VGG 16 (ImageNet). A Convolutional neural network implementation for classifying ImageNet dataset, see?tutorial_vgg16.py?here.
- VGG 19 (ImageNet). A Convolutional neural network implementation for classifying ImageNet dataset, see?tutorial_vgg19.py?here.
Natural Language Processing
- Recurrent Neural Network (LSTM). Apply multiple LSTM to PTB dataset for language modeling, see?tutorial_ptb_lstm.py?here.
- Word Embedding - Word2vec. Train a word embedding matrix, see?tutorial_word2vec_basic.py?here.
- Restore Embedding matrix. Restore a pre-train embedding matrix, see?tutorial_generate_text.py?here.
- Text Generation. Generates new text scripts, using LSTM network, see?tutorial_generate_text.py?here.
- Machine Translation (WMT). Translate English to French. Apply Attention mechanism and Seq2seq to WMT English-to-French translation data, see?tutorial_translate.py?here.
Reinforcement Learning
- Deep Reinforcement Learning - Pong Game. Teach a machine to play Pong games, see?tutorial_atari_pong.py?here.
Useful Links
- Tricks to use TensorLayer
from:?https://github.com/wagamamaz/tensorflow-tutorial/blob/master/README.md?hmsr=toutiao.io&utm_medium=toutiao.io&utm_source=toutiao.io
總結
以上是生活随笔為你收集整理的深度学习教程 TensorFlow and Deep Learning Tutorials的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Java功底之static、final、
- 下一篇: 人人都可以做深度学习应用:入门篇