TF之AE:AE实现TF自带数据集数字真实值对比AE先encoder后decoder预测数字的精确对比—daidingdaiding
生活随笔
收集整理的這篇文章主要介紹了
TF之AE:AE实现TF自带数据集数字真实值对比AE先encoder后decoder预测数字的精确对比—daidingdaiding
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
TF之AE:AE實現TF自帶數據集數字真實值對比AE先encoder后decoder預測數字的精確對比—daidingdaiding
?
?
?
?
目錄
輸出結果
代碼設計
?
?
?
?
?
?
輸出結果
代碼設計
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt#Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist=input_data.read_data_sets("/niu/mnist_data/",one_hot=False)# Parameter
learning_rate = 0.01
training_epochs = 10
batch_size = 256
display_step = 1
examples_to_show = 10# Network Parameters
n_input = 784#tf Graph input(only pictures)
X=tf.placeholder("float", [None,n_input])# hidden layer settings
n_hidden_1 = 256
n_hidden_2 = 128 <br>
weights = {'encoder_h1':tf.Variable(tf.random_normal([n_input,n_hidden_1])),'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1,n_hidden_2])),'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2,n_hidden_1])),'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])),}
biases = {'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),'decoder_b2': tf.Variable(tf.random_normal([n_input])),}#定義encoder
def encoder(x):# Encoder Hidden layer with sigmoid activation #1layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),biases['encoder_b1']))# Decoder Hidden layer with sigmoid activation #2layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),biases['encoder_b2']))return layer_2#定義decoder
def decoder(x):# Encoder Hidden layer with sigmoid activation #1layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),biases['decoder_b1']))# Decoder Hidden layer with sigmoid activation #2layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),biases['decoder_b2']))return layer_2# Construct model
encoder_op = encoder(X) # 128 Features
decoder_op = decoder(encoder_op) # 784 Features# Prediction
y_pred = decoder_op
# Targets (Labels) are the input data.
y_true = X # Define loss and optimizer, minimize the squared errorcost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)# Launch the graph
with tf.Session() as sess:<br>sess.run(tf.initialize_all_variables())total_batch = int(mnist.train.num_examples/batch_size)# Training cyclefor epoch in range(training_epochs):# Loop over all batchesfor i in range(total_batch):batch_xs, batch_ys = mnist.train.next_batch(batch_size) # max(x) = 1, min(x) = 0# Run optimization op (backprop) and cost op (to get loss value)_, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})# Display logs per epoch stepif epoch % display_step == 0:print("Epoch:", '%04d' % (epoch+1),"cost=", "{:.9f}".format(c))print("Optimization Finished!")# # Applying encode and decode over test setencode_decode = sess.run(y_pred, feed_dict={X: mnist.test.images[:examples_to_show]})# Compare original images with their reconstructionsf, a = plt.subplots(2, 10, figsize=(10, 2))plt.title('Matplotlib,AE--Jason Niu')for i in range(examples_to_show):a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)))plt.show()
?
?
相關文章
TF之AE:AE實現TF自帶數據集數字真實值對比AE先encoder后decoder預測數字的精確對比
總結
以上是生活随笔為你收集整理的TF之AE:AE实现TF自带数据集数字真实值对比AE先encoder后decoder预测数字的精确对比—daidingdaiding的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Py之uiautomator2:uiau
- 下一篇: Paper:《Graph Neural