ML之回归预测:利用6个单独+2个集成模型(LassoR、KernelRidgeR、ElasticNetR、GBR、XGBR、LGBMR,Avg、Stacking)对自动驾驶数据集【5+1】回归预测
生活随笔
收集整理的這篇文章主要介紹了
ML之回归预测:利用6个单独+2个集成模型(LassoR、KernelRidgeR、ElasticNetR、GBR、XGBR、LGBMR,Avg、Stacking)对自动驾驶数据集【5+1】回归预测
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
ML之回歸預測:利用6個單獨+2個集成模型(LassoR、KernelRidgeR、ElasticNetR、GBR、XGBR、LGBMR,Avg、Stacking)對自動駕駛數據集【5+1】進行回歸預測
?
?
?
?
目錄
利用6個單獨+2個集成模型(LassoR、KernelRidgeR、ElasticNetR、GBR、XGBR、LGBMR,Avg、Stacking)對自動駕駛數據集【5+1】進行回歸預測
輸出結果
A號
B號
C號
D號
E號
實現代碼
?
利用6個單獨+2個集成模型(LassoR、KernelRidgeR、ElasticNetR、GBR、XGBR、LGBMR,Avg、Stacking)對自動駕駛數據集【5+1】進行回歸預測
輸出結果
?
A號
采用 A號 當前執行文件: A 數據集維度: (976, 6) LassoR 5f-CV: 0.4462 (0.0563) LassoR02 5f-CV: 0.5456 (0.0715) LassoR02,train數據集 0.5526179336472097 LassoR02,test數據集 0.6732089198088576 ------------------------------------- KernelRidgeR 5f-CV: 0.6642 (0.0730) KernelRidgeR,train數據集 0.6805860822980461 KernelRidgeR,test數據集 0.7405846022727811 ------------------------------------- ElasticNetR 5f-CV: 0.4462 (0.0569) ElasticNetR02 5f-CV: 0.5456 (0.0715) ElasticNetR02,train數據集 0.5526178479012465 ElasticNetR02,test數據集 0.6731992550553381 ElasticNetR02,新數據test數據集 -0.3208470395653842 ------------------------------------- GBR 5f-CV: 0.7282 (0.0836) GBR,train數據集 0.8345981026354394 GBR,test數據集 0.8836426919685801 GBR,新數據test數據集 0.5423980510823256 ------------------------------------- XGBR 5f-CV: 0.5968 (0.1598) XGBR,train數據集 0.9498792703466663 XGBR,test數據集 0.5294274976732699 ------------------------------------- LGBMR 5f-CV: 0.6800 (0.0813) LGBMR,train數據集 0.752736654063432 LGBMR,test數據集 0.8351338223270363 LGBMR,新數據test數據集 0.13807006975794722 ------------------------------------- AverageModels:LassoR,ElasticNetR,GBR,對基模型進行集成之后的得分:0.6125 (0.0745) Avg_models,train數據集 0.6522572454986824 Avg_models,test數據集 0.7573889394793365 Avg_models,新數據test數據集 0.28916724655645554 ------------------------------------- StackingAverageModels:對基模型進行集成之后的得分:0.7343 (0.0869) stacked_averaged_model,train數據集 0.8151478562063295 stacked_averaged_model,test數據集 0.88386196685559 stacked_averaged_model,新數據test數據集 0.5691878150702203 采用datetime方法,run time: 0:01:01.575381?
B號
B號當前執行文件: B 數據集維度: (976, 6) LassoR 5f-CV: 0.8682 (0.0181) LassoR02 5f-CV: 0.9002 (0.0174) LassoR02,train數據集 0.9044985042907371 LassoR02,test數據集 0.8673000279695428 ------------------------------------- KernelRidgeR 5f-CV: 0.9258 (0.0078) KernelRidgeR,train數據集 0.9315871006958186 KernelRidgeR,test數據集 0.8942765729762692 ------------------------------------- ElasticNetR 5f-CV: 0.8347 (0.0172) ElasticNetR02 5f-CV: 0.9002 (0.0174) ElasticNetR02,train數據集 0.9044982115579915 ElasticNetR02,test數據集 0.8672996184647543 ElasticNetR02,新數據test數據集 0.8674386633384231 ------------------------------------- GBR 5f-CV: 0.9401 (0.0107) GBR,train數據集 0.9755252565420509 GBR,test數據集 0.8996646737870632 GBR,新數據test數據集 0.9427855469298937 ------------------------------------- XGBR 5f-CV: 0.9101 (0.0097) XGBR,train數據集 0.9897386330527567 XGBR,test數據集 0.8868620964266498 ------------------------------------- LGBMR 5f-CV: 0.9273 (0.0098) LGBMR,train數據集 0.945565822230994 LGBMR,test數據集 0.9016106378522288 LGBMR,新數據test數據集 0.912239659510246 ------------------------------------- AverageModels:LassoR,ElasticNetR,GBR,對基模型進行集成之后的得分:0.9055 (0.0121) Avg_models,train數據集 0.9212338840029927 Avg_models,test數據集 0.863624230603216 Avg_models,新數據test數據集 0.8975084453268236 ------------------------------------- StackingAverageModels:對基模型進行集成之后的得分:0.9311 (0.0075) stacked_averaged_model,train數據集 0.9599075263022011 stacked_averaged_model,test數據集 0.889341316554694 stacked_averaged_model,新數據test數據集 0.9325797993358927 采用datetime方法,run time: 0:01:02.191890?
C號
C號 當前執行文件: C 數據集維度: (992, 6) LassoR 5f-CV: 0.9162 (0.0212) LassoR02 5f-CV: 0.9394 (0.0170) LassoR02,train數據集 0.9421471737329558 LassoR02,test數據集 0.9487974269403479 ------------------------------------- KernelRidgeR 5f-CV: 0.9493 (0.0162) KernelRidgeR,train數據集 0.9540306526082301 KernelRidgeR,test數據集 0.9596055911175015 ------------------------------------- ElasticNetR 5f-CV: 0.8827 (0.0224) ElasticNetR02 5f-CV: 0.9394 (0.0170) ElasticNetR02,train數據集 0.9421469155702737 ElasticNetR02,test數據集 0.948805353495871 ElasticNetR02,新數據test數據集 0.8962208077263352 ------------------------------------- GBR 5f-CV: 0.9522 (0.0178) GBR,train數據集 0.9812404272642893 GBR,test數據集 0.9628921396241023 GBR,新數據test數據集 0.9286964893022183 ------------------------------------- XGBR 5f-CV: 0.9415 (0.0138) XGBR,train數據集 0.9935321998599262 XGBR,test數據集 0.9428326454095193 ------------------------------------- LGBMR 5f-CV: 0.9490 (0.0138) LGBMR,train數據集 0.9631366427757451 LGBMR,test數據集 0.9541622027766108 LGBMR,新數據test數據集 0.9235228606241966 ------------------------------------- AverageModels:LassoR,ElasticNetR,GBR,對基模型進行集成之后的得分:0.9345 (0.0177) Avg_models,train數據集 0.9460855063551356 Avg_models,test數據集 0.9457779219867603 Avg_models,新數據test數據集 0.8446597495667174 ------------------------------------- StackingAverageModels:對基模型進行集成之后的得分:0.9460 (0.0164) stacked_averaged_model,train數據集 0.9599739253607553 stacked_averaged_model,test數據集 0.9557181998955516 stacked_averaged_model,新數據test數據集 0.8723757365944271 采用datetime方法,run time: 0:01:08.054631?
D號
D號當前執行文件: D 數據集維度: (976, 6) LassoR 5f-CV: 0.9282 (0.0068) LassoR02 5f-CV: 0.9461 (0.0061) LassoR02,train數據集 0.9471148715997768 LassoR02,test數據集 0.9429608871646722 ------------------------------------- KernelRidgeR 5f-CV: 0.9565 (0.0074) KernelRidgeR,train數據集 0.9598698223204599 KernelRidgeR,test數據集 0.9591428004019469 ------------------------------------- ElasticNetR 5f-CV: 0.8893 (0.0113) ElasticNetR02 5f-CV: 0.9461 (0.0061) ElasticNetR02,train數據集 0.9471145971130267 ElasticNetR02,test數據集 0.9429656516481226 ElasticNetR02,新數據test數據集 0.8777321831171115 ------------------------------------- GBR 5f-CV: 0.9663 (0.0075) GBR,train數據集 0.9918880970087767 GBR,test數據集 0.9658277751143205 GBR,新數據test數據集 0.9352642469253626 ------------------------------------- XGBR 5f-CV: 0.9604 (0.0086) XGBR,train數據集 0.9944473922887758 XGBR,test數據集 0.955746276336988 ------------------------------------- LGBMR 5f-CV: 0.9553 (0.0100) LGBMR,train數據集 0.9702793029760722 LGBMR,test數據集 0.9650928908111341 LGBMR,新數據test數據集 0.9020016455510226 ------------------------------------- AverageModels:LassoR,ElasticNetR,GBR,對基模型進行集成之后的得分:0.9456 (0.0074) Avg_models,train數據集 0.9562357762096392 Avg_models,test數據集 0.9508352738032931 Avg_models,新數據test數據集 0.8901985855607647 ------------------------------------- StackingAverageModels:對基模型進行集成之后的得分:0.9620 (0.0063) stacked_averaged_model,train數據集 0.9799219877896265 stacked_averaged_model,test數據集 0.9649203326842157 stacked_averaged_model,新數據test數據集 0.9204436346295952 采用datetime方法,run time: 0:01:02.149102?
E號
E號 當前執行文件: E 數據集維度: (981, 6) LassoR 5f-CV: 0.9284 (0.0107) LassoR02 5f-CV: 0.9640 (0.0083) LassoR02,train數據集 0.9658976879702919 LassoR02,test數據集 0.9746237435933648 ------------------------------------- KernelRidgeR 5f-CV: 0.9720 (0.0076) KernelRidgeR,train數據集 0.976488382261757 KernelRidgeR,test數據集 0.9829086884762668 ------------------------------------- ElasticNetR 5f-CV: 0.8831 (0.0137) ElasticNetR02 5f-CV: 0.9640 (0.0083) ElasticNetR02,train數據集 0.9658973583247863 ElasticNetR02,test數據集 0.9746148277482753 ElasticNetR02,新數據test數據集 0.8972363606065893 ------------------------------------- GBR 5f-CV: 0.9800 (0.0050) GBR,train數據集 0.9949604446786614 GBR,test數據集 0.9851938616003065 GBR,新數據test數據集 0.9414241262215136 ------------------------------------- XGBR 5f-CV: 0.9760 (0.0053) XGBR,train數據集 0.996190501087066 XGBR,test數據集 0.9817664166540716 ------------------------------------- LGBMR 5f-CV: 0.9710 (0.0053) LGBMR,train數據集 0.9797176065207025 LGBMR,test數據集 0.9809832229901967 LGBMR,新數據test數據集 0.919767401386678 ------------------------------------- AverageModels:LassoR,ElasticNetR,GBR,對基模型進行集成之后的得分:0.9502 (0.0089) Avg_models,train數據集 0.9580133569841862 Avg_models,test數據集 0.9571445156072284 Avg_models,新數據test數據集 0.9199032589012549 ------------------------------------- StackingAverageModels:對基模型進行集成之后的得分:0.9707 (0.0076) stacked_averaged_model,train數據集 0.9830711403871105 stacked_averaged_model,test數據集 0.9788245785417383 stacked_averaged_model,新數據test數據集 0.9568397587253009 采用datetime方法,run time: 0:01:03.587847?
?
實現代碼
更新……
?
?
?
?
?
?
?
?
?
?
總結
以上是生活随笔為你收集整理的ML之回归预测:利用6个单独+2个集成模型(LassoR、KernelRidgeR、ElasticNetR、GBR、XGBR、LGBMR,Avg、Stacking)对自动驾驶数据集【5+1】回归预测的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: ML之FE:对爬取的某平台二手房数据进行
- 下一篇: Py之imblearn:imblearn