DL之CNN:自定义SimpleConvNet【3层,im2col优化】利用mnist数据集实现手写数字识别多分类训练来评估模型
生活随笔
收集整理的這篇文章主要介紹了
DL之CNN:自定义SimpleConvNet【3层,im2col优化】利用mnist数据集实现手写数字识别多分类训练来评估模型
小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.
DL之CNN:自定義SimpleConvNet【3層,im2col優(yōu)化】利用mnist數(shù)據(jù)集實(shí)現(xiàn)手寫數(shù)字識(shí)別多分類訓(xùn)練來評(píng)估模型
?
?
目錄
輸出結(jié)果
設(shè)計(jì)思路
核心代碼
更多輸出
?
?
?
?
輸出結(jié)果
?
?
設(shè)計(jì)思路
?
?
核心代碼
class Convolution:def __init__(self, W, b, stride=1, pad=0): ……def forward(self, x): FN, C, FH, FW = self.W.shape N, C, H, W = x.shapeout_h = 1 + int((H + 2*self.pad - FH) / self.stride)out_w = 1 + int((W + 2*self.pad - FW) / self.stride)col = im2col(x, FH, FW, self.stride, self.pad) col_W = self.W.reshape(FN, -1).T out = np.dot(col, col_W) + self.b out = out.reshape(N, out_h, out_w, -1).transpose(0, 3, 1, 2)self.x = xself.col = colself.col_W = col_Wreturn out def backward(self, dout): FN, C, FH, FW = self.W.shape dout = dout.transpose(0,2,3,1).reshape(-1, FN) self.db = np.sum(dout, axis=0) self.dW = np.dot(self.col.T, dout)self.dW = self.dW.transpose(1, 0).reshape(FN, C, FH, FW)dcol = np.dot(dout, self.col_W.T) return dx class Pooling:def __init__(self, pool_h, pool_w, stride=1, pad=0): self.pool_h = pool_hself.pool_w = pool_wself.stride = strideself.pad = padself.x = Noneself.arg_max = None……class SimpleConvNet: #def __init__(self, input_dim=(1, 28, 28), conv_param={'filter_num':30, 'filter_size':5, 'pad':0, 'stride':1},hidden_size=100, output_size=10, weight_init_std=0.01):filter_num = conv_param['filter_num']filter_size = conv_param['filter_size']filter_pad = conv_param['pad']filter_stride = conv_param['stride']input_size = input_dim[1]conv_output_size = (input_size - filter_size + 2*filter_pad) / filter_stride + 1pool_output_size = int(filter_num * (conv_output_size/2) * (conv_output_size/2))self.params = {}self.params['W1'] = weight_init_std * \np.random.randn(filter_num, input_dim[0], filter_size, filter_size)self.params['b1'] = np.zeros(filter_num)self.params['W2'] = weight_init_std * \np.random.randn(pool_output_size, hidden_size)self.params['b2'] = np.zeros(hidden_size)self.params['W3'] = weight_init_std * \np.random.randn(hidden_size, output_size)self.params['b3'] = np.zeros(output_size)self.layers = OrderedDict()self.layers['Conv1'] = Convolution(self.params['W1'], self.params['b1'],conv_param['stride'], conv_param['pad']) self.layers['Relu1'] = Relu() self.layers['Pool1'] = Pooling(pool_h=2, pool_w=2, stride=2) self.layers['Affine1'] = Affine(self.params['W2'], self.params['b2']) self.layers['Relu2'] = Relu()self.layers['Affine2'] = Affine(self.params['W3'], self.params['b3'])self.last_layer = SoftmaxWithLoss() ……def save_params(self, file_name="params.pkl"): params = {} for key, val in self.params.items(): params[key] = valwith open(file_name, 'wb') as f: pickle.dump(params, f)def load_params(self, file_name="params.pkl"): with open(file_name, 'rb') as f: params = pickle.load(f)for key, val in params.items(): self.params[key] = valfor i, key in enumerate(['Conv1', 'Affine1', 'Affine2']): self.layers[key].W = self.params['W' + str(i+1)]self.layers[key].b = self.params['b' + str(i+1)]?
?
更多輸出
train_loss:2.29956519109714 === epoch:1, train_acc:0.216, test_acc:0.218 === train_loss:2.2975110344641716 train_loss:2.291654113382576 train_loss:2.2858174689127875 train_loss:2.272262093336837 train_loss:2.267908303517325 train_loss:2.2584119706864336 train_loss:2.2258807222804693 train_loss:2.2111025085252543 train_loss:2.188119055308738 train_loss:2.163215575430596 train_loss:2.1191887076886724 train_loss:2.0542599060672186 train_loss:2.0244523646451915 train_loss:1.9779786923239808 train_loss:1.9248431928319325 train_loss:1.7920653808470397 train_loss:1.726860911000866 train_loss:1.7075144252509131 train_loss:1.6875413868425186 train_loss:1.6347461097804266 train_loss:1.5437112361395253 train_loss:1.4987893515035628 train_loss:1.3856720782969847 train_loss:1.2002110952243676 train_loss:1.2731100379603273 train_loss:1.117132621224333 train_loss:1.0622583460165833 train_loss:1.0960592785565957 train_loss:0.8692067763172185 train_loss:0.8548780420217317 train_loss:0.83872966253374 train_loss:0.7819342397053507 train_loss:0.7589812430284729 train_loss:0.7955332004991336 train_loss:0.8190930469691535 train_loss:0.6297212128196131 train_loss:0.8279837022068413 train_loss:0.6996430264702379 train_loss:0.5256550729087258 train_loss:0.7288553394002595 train_loss:0.7033049908220391 train_loss:0.5679669207218877 train_loss:0.6344174262581003 train_loss:0.7151382401438272 train_loss:0.5814593192354963 train_loss:0.5736217677325146 train_loss:0.5673622947809682 train_loss:0.48303413903204395 train_loss:0.452267909884157 train_loss:0.4009118158839013 === epoch:2, train_acc:0.818, test_acc:0.806 === train_loss:0.5669686001623327 train_loss:0.5358187806595359 train_loss:0.3837535143737321 train_loss:0.544335563142595 train_loss:0.39288485196871803 train_loss:0.49770310644457566 train_loss:0.4610248131112265 train_loss:0.36641463191798196 train_loss:0.4874682221372042 train_loss:0.38796698110644817 train_loss:0.3620230776259665 train_loss:0.4744726274001774 train_loss:0.3086952062454927 train_loss:0.40012397040718645 train_loss:0.3634667070910744 train_loss:0.3204093812396573 train_loss:0.5063082359543781 train_loss:0.5624992123039615 train_loss:0.34281562891324663 train_loss:0.3415065217065326 train_loss:0.4946703009790488 train_loss:0.48942997572068253 train_loss:0.25416776815225534 train_loss:0.3808555005314615 train_loss:0.22793380858862108 train_loss:0.4709915396804245 train_loss:0.25826190862498605 train_loss:0.44862426522901516 train_loss:0.25519522472564815 train_loss:0.5063495442657376 train_loss:0.37233317168099206 train_loss:0.4027673899570495 train_loss:0.4234905061164214 train_loss:0.44590221111177714 train_loss:0.3846538639824134 train_loss:0.3371733857576183 train_loss:0.23612786737321756 train_loss:0.4814543539448962 train_loss:0.38362762929477556 train_loss:0.5105811329813293 train_loss:0.31729857191880056 train_loss:0.43677582454472663 train_loss:0.37362647454980324 train_loss:0.2696715797445873 train_loss:0.26682852302518134 train_loss:0.18763432881504752 train_loss:0.2886557425885745 train_loss:0.23833327847639763 train_loss:0.36315802981646 train_loss:0.21083779781027828 === epoch:3, train_acc:0.89, test_acc:0.867 === train_loss:0.34070333399972674 train_loss:0.3356587138064409 train_loss:0.25919406618960505 train_loss:0.31537349840856743 train_loss:0.2276928810208216 train_loss:0.32171416950979326 train_loss:0.22754919179736025 train_loss:0.37619164258262944 train_loss:0.3221102374023198 train_loss:0.36724681541104537 train_loss:0.3310213819075522 train_loss:0.33583429981768936 train_loss:0.36054827740285833 train_loss:0.3002031789326344 train_loss:0.19480027104864756 train_loss:0.3074748184113467 train_loss:0.31035699050378 train_loss:0.37289594799797554 train_loss:0.38054981033442864 train_loss:0.2150866558286973 train_loss:0.4014488874986493 train_loss:0.2643304660197891 train_loss:0.31806887985854354 train_loss:0.29365139713396693 train_loss:0.33212651106203267 train_loss:0.29544164636048587 train_loss:0.4969991428069569 train_loss:0.3348535409949116 train_loss:0.18914984777413654 train_loss:0.3868380951987871 train_loss:0.26857192970788485 train_loss:0.373151707743815 train_loss:0.3522570704735893 train_loss:0.204823140388568 train_loss:0.3974239710544049 train_loss:0.21753509102652058 train_loss:0.26034229667679715 train_loss:0.26991319118062235 train_loss:0.30959776720795107 train_loss:0.2718109180045845 train_loss:0.2738413103423023 train_loss:0.22209179719364106 train_loss:0.5025051167945939 train_loss:0.23308114849307443 train_loss:0.24989561030033144 train_loss:0.4666621160650158 train_loss:0.3511547384608582 train_loss:0.32856542443039893 train_loss:0.29344954251556093 train_loss:0.21027623914222787 === epoch:4, train_acc:0.905, test_acc:0.897 === train_loss:0.3912739685030935 train_loss:0.38209838818230624 train_loss:0.34743100915819064 train_loss:0.2466622246872034 train_loss:0.4342299239968299 train_loss:0.2691256872383198 train_loss:0.33061633649960986 train_loss:0.24714178601043 train_loss:0.27972544337302246 train_loss:0.2594663777039397 train_loss:0.3618566656990062 train_loss:0.46329147512107755 train_loss:0.24382989786183829 train_loss:0.30893321320835465 train_loss:0.32945962831674774 train_loss:0.14512986683598966 train_loss:0.18177996995372436 train_loss:0.33010123547450865 train_loss:0.22821102485978303 train_loss:0.13184290288561265 train_loss:0.1623416243274031 train_loss:0.15789928544006773 train_loss:0.28080142395723756 train_loss:0.37489571529660976 train_loss:0.14201501357680735 train_loss:0.2721256133343583 train_loss:0.3284216941766708 train_loss:0.18839612600685815 train_loss:0.22950135076005498 train_loss:0.3657428746249682 train_loss:0.2656377917932745 train_loss:0.18838799129016182 train_loss:0.2875731634059018 train_loss:0.4565329335709001 train_loss:0.18200894573118304 train_loss:0.2305260793504801 train_loss:0.2148999949995126 train_loss:0.28529427710203675 train_loss:0.2819535462668795 train_loss:0.2670982521557257 train_loss:0.2734307192256681 train_loss:0.1388387469300277 train_loss:0.2700532055195449 train_loss:0.2179124091178431 train_loss:0.19658434695884133 train_loss:0.2777291934300614 train_loss:0.20381437081332332 train_loss:0.32907137120155455 train_loss:0.27254826158873285 train_loss:0.22710678143573176 === epoch:5, train_acc:0.913, test_acc:0.912 === train_loss:0.16794884237909946 train_loss:0.22785903063567253 train_loss:0.1704819172872827 train_loss:0.2525653382920443 train_loss:0.21185790294965987 train_loss:0.17767717976901584 train_loss:0.1889506605539382 train_loss:0.17273423199217824 train_loss:0.2510078095831616 train_loss:0.14205249835249428 train_loss:0.3129092704025964 train_loss:0.3117928731764807 train_loss:0.20503712236242064 train_loss:0.20318831742627225 train_loss:0.21303909770975452 train_loss:0.23190878850961483 train_loss:0.17291311185744473 train_loss:0.20334851907094717 train_loss:0.15855326731614855 train_loss:0.21942667459237625 train_loss:0.0924354215910217 train_loss:0.09567491107181217 train_loss:0.19180958792274005 train_loss:0.25969731631050624 train_loss:0.27574837165425986 train_loss:0.24987203428843377 train_loss:0.4377410898909417 train_loss:0.26026206472975066 train_loss:0.27954893992114804 train_loss:0.1699281856687059 train_loss:0.15934689245821898 train_loss:0.3161871226226364 train_loss:0.10976032096009508 train_loss:0.1763696866686196 train_loss:0.18580995761265345 train_loss:0.1842207131970236 train_loss:0.2443475666901613 train_loss:0.18738051698673439 train_loss:0.22270658116867303 train_loss:0.1662389219099242 train_loss:0.209158762880929 train_loss:0.22983617951577964 train_loss:0.2790296623615454 train_loss:0.24788172524111998 train_loss:0.1293738188409751 train_loss:0.1552172413660744 train_loss:0.23018276943562502 train_loss:0.16189165875684913 train_loss:0.24392025522410113 train_loss:0.13403840930108568 === epoch:6, train_acc:0.921, test_acc:0.918 === train_loss:0.1961216529174243 train_loss:0.2924197504956213 train_loss:0.19465010122753057 train_loss:0.28290935332276435 train_loss:0.14427638876873242 train_loss:0.2566711475334627 train_loss:0.167375730919932 train_loss:0.3154511081448441 train_loss:0.15788775201275967 train_loss:0.17910954391766404 train_loss:0.23884644581690193 train_loss:0.09618189067278102 train_loss:0.24388882345961582 train_loss:0.08541530798998809 train_loss:0.06809986906621876 train_loss:0.24638946409490692 train_loss:0.18927011798228044 train_loss:0.09945981596350358 train_loss:0.18495019162631973 train_loss:0.15258840338866894 train_loss:0.19096173442426728 train_loss:0.14569967578533724 train_loss:0.1841763707949563 train_loss:0.0967340944259887 train_loss:0.0970240457283082 train_loss:0.15266131436990713 train_loss:0.11793802844679865 train_loss:0.23125882163453734 train_loss:0.15401815338201266 train_loss:0.11575841101176092 train_loss:0.1333871420622398 train_loss:0.08651040019662394 train_loss:0.216125204224472 train_loss:0.16165588422959304 train_loss:0.27869245421310007 train_loss:0.11198243521614289 train_loss:0.17313438972459186 train_loss:0.17212043609334862 train_loss:0.13791897831064198 train_loss:0.2267562895570335 train_loss:0.10722405971795468 train_loss:0.1149995899103652 train_loss:0.09703973400039906 train_loss:0.21399583320148452 train_loss:0.17101299029565184 train_loss:0.12963329125364453 train_loss:0.1946558983682687 train_loss:0.15189507558508436 train_loss:0.15603991257676963 train_loss:0.1894440989591196 === epoch:7, train_acc:0.944, test_acc:0.921 === train_loss:0.1949166062126958 train_loss:0.16660652708551138 train_loss:0.11841422215045073 train_loss:0.09924967850906151 train_loss:0.20053562463811267 train_loss:0.15198739956171664 train_loss:0.23276767408280194 train_loss:0.11995565794860409 train_loss:0.21661120479200555 train_loss:0.17637313795453327 train_loss:0.172362454787868 train_loss:0.20851418734477065 train_loss:0.09537001525763981 train_loss:0.14146913793087992 train_loss:0.2617576866376055 train_loss:0.10500607559534571 train_loss:0.3396765217711637 train_loss:0.08427796011888775 train_loss:0.15303614654098532 train_loss:0.132821052254927 train_loss:0.1154173668832886 train_loss:0.12357953723411788 train_loss:0.18706847766652746 train_loss:0.2688341936588257 train_loss:0.16520252414666456 train_loss:0.08039280193318782 train_loss:0.1178618737147573 train_loss:0.1495808236060719 train_loss:0.13937468284703372 train_loss:0.09823544010832733 train_loss:0.1262785713216828 train_loss:0.17823790661433755 train_loss:0.08725751897376116 train_loss:0.1280730814886477 train_loss:0.16139747833498747 train_loss:0.13856299791286275 train_loss:0.11895206801034919 train_loss:0.12937502196848547 train_loss:0.10080232388997615 train_loss:0.1433918613109576 train_loss:0.15192895187892305 train_loss:0.1648711640447537 train_loss:0.15515860320952918 train_loss:0.11577427405176502 train_loss:0.04991838139950274 train_loss:0.16669192227101182 train_loss:0.18872017594842527 train_loss:0.13278044728094665 train_loss:0.14462363902692724 train_loss:0.12899222057327978 === epoch:8, train_acc:0.953, test_acc:0.929 === train_loss:0.11614658829052528 train_loss:0.1283181306383869 train_loss:0.13602630519082037 train_loss:0.08820753814622587 train_loss:0.16890325196609468 train_loss:0.06370471015340015 train_loss:0.1380223598283016 train_loss:0.10414267340046371 train_loss:0.09350530384194355 train_loss:0.12745550967245167 train_loss:0.08580615867361312 train_loss:0.07332708433862614 train_loss:0.14091931565454754 train_loss:0.0760411000748177 train_loss:0.09505745644205849 train_loss:0.06360761624213854 train_loss:0.06541500736200513 train_loss:0.12404314553963294 train_loss:0.10167160576295751 train_loss:0.10616148380778018 train_loss:0.1346644429775604 train_loss:0.12441423831964894 train_loss:0.3573323396268424 train_loss:0.24916186199107485 train_loss:0.12530529822852685 train_loss:0.08754367015669812 train_loss:0.07334443956083914 train_loss:0.20917550197781243 train_loss:0.1847840883495349 train_loss:0.1183049487746507 train_loss:0.07881905605438366 train_loss:0.15063665903727463 train_loss:0.17107469503107173 train_loss:0.11236219217021456 train_loss:0.09393106092285483 train_loss:0.06416538395448765 train_loss:0.11236854428092079 train_loss:0.20945523787716333 train_loss:0.08337149369731861 train_loss:0.05732487355325358 train_loss:0.1570864506321766 train_loss:0.18076648840092233 train_loss:0.13745138865307854 train_loss:0.08714081091649845 train_loss:0.1435806754576637 train_loss:0.24435407501635567 train_loss:0.12994146376471538 train_loss:0.15372389864103003 train_loss:0.09813508945397395 train_loss:0.12535304105848438 === epoch:9, train_acc:0.949, test_acc:0.929 === train_loss:0.12884389358627435 train_loss:0.07230903284506444 train_loss:0.13088479970015968 train_loss:0.08134419807781099 train_loss:0.13741150483980263 train_loss:0.11837091458319343 train_loss:0.0360333597933849 train_loss:0.10086706481279009 train_loss:0.07501685865192625 train_loss:0.07863162231090925 train_loss:0.13702724499254867 train_loss:0.08084087775983821 train_loss:0.12343541914233253 train_loss:0.07850160249109997 train_loss:0.09418802616477617 train_loss:0.09552050398868868 train_loss:0.07673580117804006 train_loss:0.026939052951253605 train_loss:0.04395589295983649 train_loss:0.038031816812409164 train_loss:0.06999557624936044 train_loss:0.1655966718000311 train_loss:0.06368445153357599 train_loss:0.04010530475275284 train_loss:0.12382479494357689 train_loss:0.1641936287301483 train_loss:0.18920478194308601 train_loss:0.05733130321010137 train_loss:0.17698603597887125 train_loss:0.10764127802606108 train_loss:0.09413680031262134 train_loss:0.08907267445559093 train_loss:0.15502890698462124 train_loss:0.1533752414611575 train_loss:0.12011510053939835 train_loss:0.09968853683767069 train_loss:0.0906986479553312 train_loss:0.06981896162587345 train_loss:0.125922628245562 train_loss:0.08376618287979185 train_loss:0.05995160730233552 train_loss:0.09389935503195222 train_loss:0.13350440149583398 train_loss:0.09142311542034161 train_loss:0.13335311846237471 train_loss:0.11711887232469347 train_loss:0.044254101034480256 train_loss:0.06471555203906754 train_loss:0.14891282539205272 train_loss:0.2014883194756923 === epoch:10, train_acc:0.953, test_acc:0.94 === train_loss:0.07038223814736246 train_loss:0.04957925723048767 train_loss:0.1133203501417986 train_loss:0.06346746023246018 train_loss:0.09239005821377208 train_loss:0.09635593692155876 train_loss:0.08332106191636164 train_loss:0.09923978538225704 train_loss:0.0695841620944646 train_loss:0.06700538032716745 train_loss:0.0624946961727422 train_loss:0.08112967415293411 train_loss:0.07319622148310498 train_loss:0.060854721728220804 train_loss:0.10026635040038442 train_loss:0.10472330229823613 train_loss:0.10699083742922384 train_loss:0.11619034438665427 train_loss:0.11232902974524973 train_loss:0.20983846300025782 train_loss:0.06507078644782731 train_loss:0.04803232504884892 train_loss:0.11241615961989934 train_loss:0.10809407983258541 train_loss:0.11393344596723093 train_loss:0.0780092673392942 train_loss:0.14979393788923598 train_loss:0.12941990772896717 train_loss:0.11111693366947283 train_loss:0.09567980863367559 train_loss:0.09901129012576136 train_loss:0.10082353815636745 train_loss:0.12243756319120067 train_loss:0.08689941759333618 train_loss:0.05216551452802829 train_loss:0.10835939204484273 train_loss:0.07147497183981844 train_loss:0.08423764778379547 train_loss:0.07612742085525462 train_loss:0.041279006803477764 train_loss:0.09023533744854008 train_loss:0.1187026526641907 train_loss:0.07174824257614387 train_loss:0.08675031602602198 train_loss:0.04807893244994377 train_loss:0.1318909470505687 train_loss:0.19234102727794575 train_loss:0.0844066471575179 train_loss:0.1194799891798427 train_loss:0.11756051445361188 === epoch:11, train_acc:0.964, test_acc:0.94 === train_loss:0.1741824301332884 train_loss:0.041286453453026034 train_loss:0.20004781800934587 train_loss:0.08271887641369358 train_loss:0.0606625239406979 train_loss:0.06538885049218911 train_loss:0.1356239427381109 train_loss:0.12831547213191985 train_loss:0.14952022857091044 train_loss:0.09204728635629016 train_loss:0.06343795479799186 train_loss:0.09542404144224398 train_loss:0.09551244124437158 train_loss:0.0891461114187921 train_loss:0.08209391054821052 train_loss:0.06472937443672702 train_loss:0.10047991184910417 train_loss:0.05707977543296623 train_loss:0.04815266262234755 train_loss:0.10651405686868827 train_loss:0.12602581734400617 train_loss:0.11018803681586739 train_loss:0.09593175516685674 train_loss:0.10567684258621385 train_loss:0.07294477870498717 train_loss:0.1567460170890917 train_loss:0.08316370852102375 train_loss:0.04109785490526308 train_loss:0.09704109927945906 train_loss:0.06787451589479968 train_loss:0.1423526303311424 train_loss:0.10986156365848007 train_loss:0.10423944228047448 train_loss:0.1028545207161217 train_loss:0.05618516378954049 train_loss:0.12271709492529449 train_loss:0.06721168644287813 train_loss:0.10895658850953614 train_loss:0.10775961729824406 train_loss:0.06743315701995885 train_loss:0.08305814341761182 train_loss:0.05321124556958834 train_loss:0.05756614795873562 train_loss:0.03164124719166145 train_loss:0.07571387158776285 train_loss:0.022717308653022045 train_loss:0.08454968003060453 train_loss:0.06985803163452406 train_loss:0.0735357209850279 train_loss:0.12137582450718915 === epoch:12, train_acc:0.968, test_acc:0.953 === train_loss:0.07907120936971256 train_loss:0.08286032073978893 train_loss:0.04898870244905463 train_loss:0.034494833700644746 train_loss:0.0545292573630558 train_loss:0.09563509920019846 train_loss:0.04436742890869528 train_loss:0.10660676044922741 train_loss:0.019977276298316103 train_loss:0.1328083457613646 train_loss:0.0907383936554434 train_loss:0.17664993915612345 train_loss:0.05548546973911768 train_loss:0.0578792152572221 train_loss:0.038371068208326226 train_loss:0.12337543344621996 train_loss:0.04066448395658238 train_loss:0.0891017754256894 train_loss:0.048119613606837836 train_loss:0.09627189693299613 train_loss:0.0615439438317032 train_loss:0.03652546901286493 train_loss:0.04904481977735155 train_loss:0.03786403574522856 train_loss:0.04851347835633977 train_loss:0.03595106606907578 train_loss:0.04505040897006021 train_loss:0.09218815322372864 train_loss:0.0898107270167961 train_loss:0.06807205147334808 train_loss:0.11208901315010138 train_loss:0.02846301456851753 train_loss:0.03331721683136077 train_loss:0.027542070923049847 train_loss:0.06303924155306156 train_loss:0.13016506969855235 train_loss:0.03590030898483354 train_loss:0.033862974609868444 train_loss:0.039098987899974916 train_loss:0.1709281757500104 train_loss:0.0383273966279281 train_loss:0.03892162515633711 train_loss:0.10949855394502289 train_loss:0.0812137443231561 train_loss:0.14633906802587351 train_loss:0.10698167565558854 train_loss:0.02567424926759748 train_loss:0.08120468910017875 train_loss:0.08020246456611246 train_loss:0.08497396843283474 === epoch:13, train_acc:0.972, test_acc:0.953 === train_loss:0.06180842566259316 train_loss:0.06275956683872176 train_loss:0.03597311434260791 train_loss:0.08955532839130037 train_loss:0.09472783598052546 train_loss:0.09784739962031823 train_loss:0.05449014569529458 train_loss:0.1539071976175351 train_loss:0.09529460808203737 train_loss:0.07943081264823855 train_loss:0.06282500883951327 train_loss:0.08120914933452372 train_loss:0.05394166809037722 train_loss:0.059178370081143274 train_loss:0.06097175155344926 train_loss:0.08850387282237344 train_loss:0.07763568680618946 train_loss:0.05984945146739694 train_loss:0.058515554469394306 train_loss:0.041470749797641863 train_loss:0.04641305484474891 train_loss:0.043105933680273774 train_loss:0.07810105339636093 train_loss:0.07343223348336785 train_loss:0.11328438379951372 train_loss:0.064209095862823 train_loss:0.058276521292794765 train_loss:0.08575165759210586 train_loss:0.03446469146442009 train_loss:0.08030590413200737 train_loss:0.06030731369033857 train_loss:0.059937874948476855 train_loss:0.09825030448814026 train_loss:0.033150548450314274 train_loss:0.06275798815573187 train_loss:0.07623978702315799 train_loss:0.06863532191157451 train_loss:0.09434234640572493 train_loss:0.05988773543728522 train_loss:0.0973386163099195 train_loss:0.037677231861936444 train_loss:0.04349353141613669 train_loss:0.054963630265228526 train_loss:0.07002833794183859 train_loss:0.11146208322987784 train_loss:0.0371527618982775 train_loss:0.07357346163635663 train_loss:0.05434699135953322 train_loss:0.05237280178266695 train_loss:0.061138199418957304 === epoch:14, train_acc:0.977, test_acc:0.953 === train_loss:0.10066501587317372 train_loss:0.08921077888039124 train_loss:0.08231892225338307 train_loss:0.04772890908936607 train_loss:0.09184041168344921 train_loss:0.0938990402442275 train_loss:0.0494225943872303 train_loss:0.03844382368238921 train_loss:0.06391940914619151 train_loss:0.05342051430572013 train_loss:0.026444387224084483 train_loss:0.04130568390788019 train_loss:0.04355302798092278 train_loss:0.04368090744575301 train_loss:0.06303958330270483 train_loss:0.05266226318173275 train_loss:0.03821582056566959 train_loss:0.07639486631748305 train_loss:0.04911411347416994 train_loss:0.038169986550654546 train_loss:0.13870806289567578 train_loss:0.02962001734644125 train_loss:0.04476946757525486 train_loss:0.029287110761754498 train_loss:0.09072230859627803 train_loss:0.04213956443267707 train_loss:0.026866370710789175 train_loss:0.031073106822891664 train_loss:0.02913660454796326 train_loss:0.01717886084993834 train_loss:0.03947121149322037 train_loss:0.10302445790288721 train_loss:0.05921670277047061 train_loss:0.0441078831750056 train_loss:0.034245762460219924 train_loss:0.03702118405857356 train_loss:0.059523914896238844 train_loss:0.08474177088511838 train_loss:0.01984261067581143 train_loss:0.03649283528554719 train_loss:0.0696744613847696 train_loss:0.043124531467626355 train_loss:0.07847660225519426 train_loss:0.03110892663155919 train_loss:0.013048617405107545 train_loss:0.03058430961791362 train_loss:0.10944775307658777 train_loss:0.036016185483549956 train_loss:0.02334871888725246 train_loss:0.03343570584902615 === epoch:15, train_acc:0.978, test_acc:0.955 === train_loss:0.03039950446343728 train_loss:0.08462547050837538 train_loss:0.032203680055763614 train_loss:0.03436650325431724 train_loss:0.07253946928673467 train_loss:0.06683830994435695 train_loss:0.06365612671518663 train_loss:0.038592355748068366 train_loss:0.017214805539273587 train_loss:0.03392215480646994 train_loss:0.06712344038335312 train_loss:0.08545444441474491 train_loss:0.03565551818896037 train_loss:0.03700222964797901 train_loss:0.05504566593144957 train_loss:0.06284156488557872 train_loss:0.01790621057871843 train_loss:0.04948893828174306 train_loss:0.04592254340798565 train_loss:0.06398640989500583 train_loss:0.10908329324005156 train_loss:0.09487084234534628 train_loss:0.053787562583242826 train_loss:0.05612223096492913 train_loss:0.024009003497293274 train_loss:0.03787210692940926 train_loss:0.09744410172518134 train_loss:0.02282525149417848 train_loss:0.06533342475382259 train_loss:0.08171715736560953 train_loss:0.04070724777349443 train_loss:0.06953272511044452 train_loss:0.02855280306742936 train_loss:0.0474283156516662 train_loss:0.04395351930213369 train_loss:0.04529719694665024 train_loss:0.11563204324980689 train_loss:0.031898844518736105 train_loss:0.027477227657423706 train_loss:0.023383771724825565 train_loss:0.049706631766448794 train_loss:0.031100655225489174 train_loss:0.09009450125248943 train_loss:0.030676528683159683 train_loss:0.01692270088282052 train_loss:0.025600749636003037 train_loss:0.023930285953440864 train_loss:0.05294293370777191 train_loss:0.08650284038477984 train_loss:0.10454565072160892 === epoch:16, train_acc:0.98, test_acc:0.955 === train_loss:0.05020287465705867 train_loss:0.06582624488708202 train_loss:0.05263721175022644 train_loss:0.13467920218173793 train_loss:0.042511734082618255 train_loss:0.06410160534179558 train_loss:0.04919028612235428 train_loss:0.05743613134261321 train_loss:0.0654026197411463 train_loss:0.044988743028737746 train_loss:0.03509888962259968 train_loss:0.04152055661578496 train_loss:0.07984768703470407 train_loss:0.04598595090000615 train_loss:0.04695586870826502 train_loss:0.023194242317372736 train_loss:0.0727661396279491 train_loss:0.029529078635952798 train_loss:0.03247264667136894 train_loss:0.045715430493677864 train_loss:0.09389997032682505 train_loss:0.030092722641706086 train_loss:0.040039704380178245 train_loss:0.01691320967299449 train_loss:0.05070621322747806 train_loss:0.0225280810454206 train_loss:0.04835428643664134 train_loss:0.04789046408078379 train_loss:0.04612012129182796 train_loss:0.03235681563723572 train_loss:0.025013118629385985 train_loss:0.02686317762122873 train_loss:0.01619148759252484 train_loss:0.025772857201395855 train_loss:0.11601878857144289 train_loss:0.03260786464856165 train_loss:0.11699193164137509 train_loss:0.03512108879147574 train_loss:0.1296771456246295 train_loss:0.05990833703421112 train_loss:0.04814119058671268 train_loss:0.030508106418284164 train_loss:0.040792767467867204 train_loss:0.03729097681074012 train_loss:0.033829135343674634 train_loss:0.04572861828306607 train_loss:0.08219478878922817 train_loss:0.03992035364218883 train_loss:0.03877334387840298 train_loss:0.020135442415332494 === epoch:17, train_acc:0.985, test_acc:0.952 === train_loss:0.0573879679439545 train_loss:0.021548063539220688 train_loss:0.02026094914055154 train_loss:0.017008292034281135 train_loss:0.03644381984642446 train_loss:0.014282373129234844 train_loss:0.016566814170416534 train_loss:0.0716841677349114 train_loss:0.03655291810668415 train_loss:0.021277181810570735 train_loss:0.031425444981420726 train_loss:0.023091189748999884 train_loss:0.03965608369203497 train_loss:0.02083114039735955 train_loss:0.019066995516890377 train_loss:0.031482705592815144 train_loss:0.01120953512484204 train_loss:0.02228841358023976 train_loss:0.019201103378694014 train_loss:0.0578870953252985 train_loss:0.06953714404223653 train_loss:0.01477906336701353 train_loss:0.03570613669823849 train_loss:0.032205423631456224 train_loss:0.017607830384249956 train_loss:0.022332266983392062 train_loss:0.02484238892631349 train_loss:0.024456964557631952 train_loss:0.014892596258498645 train_loss:0.02007855498244406 train_loss:0.10612949393231301 train_loss:0.027800458122900946 train_loss:0.02032975418675139 train_loss:0.0687399190755896 train_loss:0.045257181737845 train_loss:0.022502761141273062 train_loss:0.016465106232977655 train_loss:0.047075313910580195 train_loss:0.015330605341329271 train_loss:0.017603254364037816 train_loss:0.031170443502446705 train_loss:0.07249246022522765 train_loss:0.08642323375728528 train_loss:0.009238019288650805 train_loss:0.016168523687302924 train_loss:0.059189578742659926 train_loss:0.032899410552574435 train_loss:0.021636004794118757 train_loss:0.02361620610060937 train_loss:0.009924447333153601 === epoch:18, train_acc:0.984, test_acc:0.955 === train_loss:0.03297920575719971 train_loss:0.023211974536229463 train_loss:0.023447487978865138 train_loss:0.02110348003690432 train_loss:0.01658551264501526 train_loss:0.027321771841294 train_loss:0.02393954174141599 train_loss:0.020660925712682302 train_loss:0.059811565901714096 train_loss:0.03889841545509195 train_loss:0.030567186107595505 train_loss:0.014637006415181588 train_loss:0.009532910801279574 train_loss:0.05419154580817005 train_loss:0.016191570395205506 train_loss:0.037379669867669094 train_loss:0.02203393293059752 train_loss:0.010187609365885714 train_loss:0.014143504678078544 train_loss:0.02286213697760976 train_loss:0.023042577643409064 train_loss:0.02471646877045257 train_loss:0.08498801234463908 train_loss:0.0242036001152738 train_loss:0.022578090133924276 train_loss:0.05970722708772782 train_loss:0.03202530556617804 train_loss:0.05338138039773102 train_loss:0.04463245296079495 train_loss:0.03206047252903087 train_loss:0.019347849251929422 train_loss:0.023362730340730487 train_loss:0.03485291969510898 train_loss:0.05924776862243811 train_loss:0.009056978954709626 train_loss:0.04308362839978184 train_loss:0.05077186188071209 train_loss:0.020649662647307408 train_loss:0.02737382223358688 train_loss:0.016355353461969535 train_loss:0.04353351414915996 train_loss:0.03866700258198946 train_loss:0.034930203176868485 train_loss:0.05397897521853895 train_loss:0.026402778273328865 train_loss:0.01689432395084394 train_loss:0.009645053179985376 train_loss:0.015939626217848713 train_loss:0.04521449099196396 train_loss:0.009337164608357028 === epoch:19, train_acc:0.988, test_acc:0.957 === train_loss:0.07281545036894353 train_loss:0.03304679858053896 train_loss:0.017578649483574377 train_loss:0.035316237680244694 train_loss:0.06109649867654281 train_loss:0.11357374683767389 train_loss:0.02483234829972833 train_loss:0.012946971291290165 train_loss:0.023761433518867836 train_loss:0.026861396528693442 train_loss:0.038687220428920886 train_loss:0.025045999932346977 train_loss:0.030357339557961008 train_loss:0.015449713594176082 train_loss:0.029012299978168895 train_loss:0.013354758625586532 train_loss:0.024714900194681148 train_loss:0.03025567287666344 train_loss:0.020948136642865007 train_loss:0.022452751530621335 train_loss:0.017637320910353846 train_loss:0.037696091268993266 train_loss:0.04133004023875008 train_loss:0.02098629767264089 train_loss:0.027257711709578428 train_loss:0.03464859263099433 train_loss:0.024586449767853447 train_loss:0.031324097177386274 train_loss:0.03772372686263441 train_loss:0.016790171599489236 train_loss:0.015417473534566956 train_loss:0.014313304385103295 train_loss:0.018911987710428353 train_loss:0.03268773877599193 train_loss:0.03169852876511249 train_loss:0.016634851724425005 train_loss:0.022491226115508897 train_loss:0.012846097684058401 train_loss:0.04491637989670535 train_loss:0.026276411989839717 train_loss:0.046483783459765664 train_loss:0.027554142605377273 train_loss:0.045690054296902184 train_loss:0.007125631899693551 train_loss:0.030307882046600162 train_loss:0.043824235242418484 train_loss:0.012116814299235173 train_loss:0.02551120642569737 train_loss:0.020675326146158267 train_loss:0.01904337304161037 === epoch:20, train_acc:0.988, test_acc:0.955 === train_loss:0.019811489377421325 train_loss:0.02904394417605083 train_loss:0.014182669827434878 train_loss:0.08310473502963105 train_loss:0.025266767052067554 train_loss:0.0145968293286221 train_loss:0.024431311092897222 train_loss:0.017772308902654126 train_loss:0.013775975044123154 train_loss:0.019179699126282618 train_loss:0.02050997906687725 train_loss:0.06601309296229428 train_loss:0.04328029600024481 train_loss:0.013779654928032846 train_loss:0.03548073194070947 train_loss:0.028314291416797463 train_loss:0.017903589499994797 train_loss:0.026682962872456875 train_loss:0.015331922374534714 train_loss:0.03510248118020717 train_loss:0.015798064472410285 train_loss:0.02278987724913449 train_loss:0.015320626099717495 train_loss:0.014856919374004763 train_loss:0.049061211134819704 train_loss:0.013149540835931117 train_loss:0.02876937879648784 train_loss:0.011511044682713648 train_loss:0.017319277626619986 train_loss:0.021966338633536506 train_loss:0.022826014668981102 train_loss:0.02972405077807331 train_loss:0.017999248202233014 train_loss:0.015019578338274385 train_loss:0.013615559543221783 train_loss:0.017157088527906976 train_loss:0.031165739705942195 train_loss:0.016688990000663685 train_loss:0.020805501326501673 train_loss:0.004446125733896681 train_loss:0.019461930759853602 train_loss:0.017395898859850177 train_loss:0.011972844953611752 train_loss:0.02855626286829241 train_loss:0.03471848511969467 train_loss:0.03534078528114222 train_loss:0.012080809790091997 train_loss:0.012558807787670045 train_loss:0.012191937787715228 =============== Final Test Accuracy =============== test_acc:0.959 Saved Network Parameters!?
總結(jié)
以上是生活随笔為你收集整理的DL之CNN:自定义SimpleConvNet【3层,im2col优化】利用mnist数据集实现手写数字识别多分类训练来评估模型的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: MyEclipse2017:MyEcli
- 下一篇: DL之CNN可视化:利用SimpleCo