DL之BigGAN:利用BigGAN算法实现超强炸天效果——画风的确skr、skr、skr,太特么的skr了
DL之BigGAN:利用BigGAN算法實現超強炸天效果——畫風的確skr、skr、skr,太特么的skr了
導讀
? ??本博主剛剛利用代碼進行測試,結果的確吊(不)炸(可)天(思議)!BigGAN的效果的確不可思議,但是關于GAN到底學了什么,仍需要理論研究支持,這個可視化的過渡階段,倒是給了一個好的想象空間。還有,BigGAN的以假亂真,到底應該如何應用,這也是一個亟待解決的問題。
?
?
目錄
輸出效果
實現代碼
?
?
?
相關文章
Paper之BigGAN:ICLR 2019最新論文《LARGE SCALE GAN TRAINING FOR HIGH FIDELITY NATURAL IMAGE SYNTHESIS》論文研究中
輸出效果
一、Explore BigGAN samples of a particular category
Try varying the truncation value.
1、ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus
PS:保護北極熊,阻止全球氣候變暖,愛護環境,人人有責;綠色出行,低碳生活,從我做起!
2、sloth bear, Melursus ursinus, Ursus ursinus
3、ant, emmet, pismire
4、great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias
5、house finch, linnet, Carpodacus mexicanus
6、tiger cat
?
?
二、Interpolate between BigGAN samples
? ? Try setting different categorys with the same noise_seeds, or the same categorys with different noise_seeds. Or go wild and set both any way you like!
1、pug, pug-dog→Persian cat
2、pug, pug-dogjian→lion, king of beasts, Panthera leo
3、pug, pug-dog →?tiger, Panthera tigris
4、pug, pug-dog →brown bear, bruin, Ursus arctos
5、?golden retriever→coral fungus
6、golden retriever→toilet tissue, toilet paper, bathroom tissue
7、golden retriever→pineapple, ananas
8、golden retriever→banana
9、?goldfish, Carassius auratus→red wine
10、golf ball → starfish, sea star
?
實現代碼
import cStringIO import IPython.display import numpy as np import PIL.Image from scipy.stats import truncnorm import tensorflow as tf import tensorflow_hub as hubinput_z = inputs['z'] input_y = inputs['y'] input_trunc = inputs['truncation']dim_z = input_z.shape.as_list()[1] vocab_size = input_y.shape.as_list()[1]def truncated_z_sample(batch_size, truncation=1., seed=None):state = None if seed is None else np.random.RandomState(seed)values = truncnorm.rvs(-2, 2, size=(batch_size, dim_z), random_state=state)return truncation * valuesdef one_hot(index, vocab_size=vocab_size):index = np.asarray(index)if len(index.shape) == 0:index = np.asarray([index])assert len(index.shape) == 1num = index.shape[0]output = np.zeros((num, vocab_size), dtype=np.float32)output[np.arange(num), index] = 1return outputdef one_hot_if_needed(label, vocab_size=vocab_size):label = np.asarray(label)if len(label.shape) <= 1:label = one_hot(label, vocab_size)assert len(label.shape) == 2return labeldef sample(sess, noise, label, truncation=1., batch_size=8,vocab_size=vocab_size):noise = np.asarray(noise)label = np.asarray(label)num = noise.shape[0]if len(label.shape) == 0:label = np.asarray([label] * num)if label.shape[0] != num:raise ValueError('Got # noise samples ({}) != # label samples ({})'.format(noise.shape[0], label.shape[0]))label = one_hot_if_needed(label, vocab_size)ims = []for batch_start in xrange(0, num, batch_size):s = slice(batch_start, min(num, batch_start + batch_size))feed_dict = {input_z: noise[s], input_y: label[s], input_trunc: truncation}ims.append(sess.run(output, feed_dict=feed_dict))ims = np.concatenate(ims, axis=0)assert ims.shape[0] == numims = np.clip(((ims + 1) / 2.0) * 256, 0, 255)ims = np.uint8(ims)return imsdef interpolate(A, B, num_interps):alphas = np.linspace(0, 1, num_interps)if A.shape != B.shape:raise ValueError('A and B must have the same shape to interpolate.')return np.array([(1-a)*A + a*B for a in alphas])def imgrid(imarray, cols=5, pad=1):if imarray.dtype != np.uint8:raise ValueError('imgrid input imarray must be uint8')pad = int(pad)assert pad >= 0cols = int(cols)assert cols >= 1N, H, W, C = imarray.shaperows = int(np.ceil(N / float(cols)))batch_pad = rows * cols - Nassert batch_pad >= 0post_pad = [batch_pad, pad, pad, 0]pad_arg = [[0, p] for p in post_pad]imarray = np.pad(imarray, pad_arg, 'constant', constant_values=255)H += padW += padgrid = (imarray.reshape(rows, cols, H, W, C).transpose(0, 2, 1, 3, 4).reshape(rows*H, cols*W, C))if pad:grid = grid[:-pad, :-pad]return griddef imshow(a, format='png', jpeg_fallback=True):a = np.asarray(a, dtype=np.uint8)str_file = cStringIO.StringIO()PIL.Image.fromarray(a).save(str_file, format)png_data = str_file.getvalue()try:disp = IPython.display.display(IPython.display.Image(png_data))except IOError:if jpeg_fallback and format != 'jpeg':print ('Warning: image was too large to display in format "{}"; ''trying jpeg instead.').format(format)return imshow(a, format='jpeg')else:raisereturn disptf.reset_default_graph() print 'Loading BigGAN module from:', module_path module = hub.Module(module_path) inputs = {k: tf.placeholder(v.dtype, v.get_shape().as_list(), k)for k, v in module.get_input_info_dict().iteritems()} output = module(inputs) ? print print 'Inputs:\n', '\n'.join(' {}: {}'.format(*kv) for kv in inputs.iteritems()) print print 'Output:', outputtf.reset_default_graph() print 'Loading BigGAN module from:', module_path module = hub.Module(module_path) inputs = {k: tf.placeholder(v.dtype, v.get_shape().as_list(), k)for k, v in module.get_input_info_dict().iteritems()} output = module(inputs) ? print print 'Inputs:\n', '\n'.join(' {}: {}'.format(*kv) for kv in inputs.iteritems()) print print 'Output:', output?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
總結
以上是生活随笔為你收集整理的DL之BigGAN:利用BigGAN算法实现超强炸天效果——画风的确skr、skr、skr,太特么的skr了的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: FE之DR之线性降维:PCA/白化、LD
- 下一篇: ML之Clustering之普聚类算法: