ML之RF:基于Matlab利用RF算法实现根据乳腺肿瘤特征向量高精度(better)预测肿瘤的是恶性还是良性
生活随笔
收集整理的這篇文章主要介紹了
ML之RF:基于Matlab利用RF算法实现根据乳腺肿瘤特征向量高精度(better)预测肿瘤的是恶性还是良性
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
ML之RF:基于Matlab利用RF算法實現根據乳腺腫瘤特征向量高精度(better)預測腫瘤的是惡性還是良性
?
?
目錄
輸出結果
實現代碼
?
?
?
?
輸出結果
更新……
?
?
實現代碼
%RF:RF實現根據乳腺腫瘤特征向量高精度(better)預測腫瘤的是惡性還是良性load?data.mata =?randperm(569); Train = data(a(1:500),:); Test = data(a(501:end),:);P_train = Train(:,3:end); T_train = Train(:,2);P_test = Test(:,3:end); T_test = Test(:,2);model = classRF_train(P_train,T_train);?[T_sim,votes] = classRF_predict(P_test,model);count_B =?length(find(T_train == 1)); count_M =?length(find(T_train == 2)); total_B =?length(find(data(:,2) == 1)); total_M =?length(find(data(:,2) == 2)); number_B =?length(find(T_test == 1)); number_M =?length(find(T_test == 2)); number_B_sim =?length(find(T_sim == 1 & T_test == 1)); number_M_sim =?length(find(T_sim == 2 & T_test == 2)); disp(['病例總數:'?num2str(569)...'? 良性:'?num2str(total_B)...'? 惡性:'?num2str(total_M)]); disp(['訓練集病例總數:'?num2str(500)...'? 良性:'?num2str(count_B)...'? 惡性:'?num2str(count_M)]); disp(['測試集病例總數:'?num2str(69)...'? 良性:'?num2str(number_B)...'? 惡性:'?num2str(number_M)]); disp(['良性乳腺腫瘤確診:'?num2str(number_B_sim)...'? 誤診:'?num2str(number_B - number_B_sim)...'? 確診率p1='?num2str(number_B_sim/number_B*100)?'%']); disp(['惡性乳腺腫瘤確診:'?num2str(number_M_sim)...'? 誤診:'?num2str(number_M - number_M_sim)...'? 確診率p2='?num2str(number_M_sim/number_M*100)?'%']);figureindex =?find(T_sim ~= T_test); plot(votes(index,1),votes(index,2),'r*') hold?onindex =?find(T_sim == T_test); plot(votes(index,1),votes(index,2),'bo') hold?onlegend('紅色*是錯誤分類樣本','藍色空心圓是正確分類樣本')plot(0:500,500:-1:0,'r-.') hold?onplot(0:500,0:500,'r-.') hold?online([100 400 400 100 100],[100 100 400 400 100])xlabel('輸出為類別1的決策樹棵數') ylabel('輸出為類別2的決策樹棵數') title('隨機森林分類器性能分析—Jason niu')???Accuracy =?zeros(1,20); for?i?= 50:50:1000iaccuracy =?zeros(1,100);for?k = 1:100model = classRF_train(P_train,T_train,i);T_sim = classRF_predict(P_test,model);accuracy(k) =?length(find(T_sim == T_test)) /?length(T_test);endAccuracy(i/50) =?mean(accuracy); endfigure plot(50:50:1000,Accuracy) xlabel('隨機森林中決策樹棵數') ylabel('分類正確率') title('隨機森林中決策樹棵數對性能的影響—Jason niu')?
相關文章
RF:RF實現根據乳腺腫瘤特征向量高精度(better)預測腫瘤的是惡性還是良性
總結
以上是生活随笔為你收集整理的ML之RF:基于Matlab利用RF算法实现根据乳腺肿瘤特征向量高精度(better)预测肿瘤的是恶性还是良性的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: BlockChain:《区块链技术在医疗
- 下一篇: ML之SVM:调用(sklearn的lf