Py之Pandas:Python的pandas库简介、安装、使用方法详细攻略
Py之Pandas:Python的pandas庫簡介、安裝、使用方法詳細攻略
?
?
目錄
pandas庫簡介
pandas庫安裝
pandas庫使用方法
1、函數使用方法
2、使用經驗總結
3、繪圖相關操作
?
?
?
推薦文章
Py之Pandas:Python的pandas庫簡介、安裝、使用方法詳細攻略
Python之pandas:DataFrame二維表的簡介、常用函數、常用案例之詳細攻略
Python:Python實現讀入、寫出、復制(自定義函數封裝)各自類型如txt、csv等文件之詳細攻略
Python之pandas:DataFrame表格數據文件最常用的函數(輸出基本信息)集合
Python之Pandas:pandas系列自定義函數封裝(將數據表格文件進行橫向/縱向拼接、統計每一列不重復類別及其個數)
Python之pandas:DataFrame常用函數(輸出基本信息&與字典、統計、映射等相關)案例集合
?
pandas庫簡介
? ? ? 在 Python 自帶的科學計算庫中,Pandas 模塊是最適于數據科學相關操作的工具。它與 Scikit-learn 兩個模塊幾乎提供了數據科學家所需的全部工具。Pandas 是一種開源的、易于使用的數據結構和Python編程語言的數據分析工具。
? ? ? 根據大多數一線從事機器學習應用的研發人員的經驗,如果問他們究竟在機器學習的哪個環節最耗費時間,恐怕多數人會很無奈地回答您:“數據預處理?!薄J聦嵣?#xff0c;多數在業界的研發團隊往往不會投人太多精力從事全新機器學習模型的研究,而是針對具體的項目和特定的數據,使用現有的經典模型進行分析。這樣一來,時間多數被花費在處理數據,甚至是數據清洗的工作上,特別是在數據還相對原始的條件下。Pandas便應運而生,它是一款針對于數據處理和分析的Python工具包,實現了大量便于數據讀寫、清洗、填充以及分析的功能。這樣就幫助研發人員節省了大量用于數據預處理下作的代碼,同時也使得他們有更多的精力專注于具體的機器學習任務。
pandas: powerful Python data analysis toolkit
pandas
?
pandas庫安裝
pip install pandas
?
pandas庫使用方法
1、函數使用方法
Pickling
| read_pickle(path[,?compression]) | Load pickled pandas object (or any object) from file. |
Flat File
| read_table(filepath_or_buffer[,?sep,?…]) | (DEPRECATED) Read general delimited file into DataFrame. |
| read_csv(filepath_or_buffer[,?sep,?…]) | Read a comma-separated values (csv) file into DataFrame. |
| read_fwf(filepath_or_buffer[,?colspecs,?…]) | Read a table of fixed-width formatted lines into DataFrame. |
| read_msgpack(path_or_buf[,?encoding,?iterator]) | Load msgpack pandas object from the specified file path |
Clipboard
| read_clipboard([sep]) | Read text from clipboard and pass to read_csv. |
Excel
| read_excel(io[,?sheet_name,?header,?names,?…]) | Read an Excel file into a pandas DataFrame. |
| ExcelFile.parse([sheet_name,?header,?names,?…]) | Parse specified sheet(s) into a DataFrame |
| ExcelWriter(path[,?engine,?date_format,?…]) | Class for writing DataFrame objects into excel sheets, default is to use xlwt for xls, openpyxl for xlsx. |
JSON
| read_json([path_or_buf,?orient,?typ,?dtype,?…]) | Convert a JSON string to pandas object. |
| json_normalize(data[,?record_path,?meta,?…]) | Normalize semi-structured JSON data into a flat table. |
| build_table_schema(data[,?index,?…]) | Create a Table schema from?data. |
HTML
| read_html(io[,?match,?flavor,?header,?…]) | Read HTML tables into a?list?of?DataFrame?objects. |
HDFStore: PyTables (HDF5)
| read_hdf(path_or_buf[,?key,?mode]) | Read from the store, close it if we opened it. |
| HDFStore.put(key,?value[,?format,?append]) | Store object in HDFStore |
| HDFStore.append(key,?value[,?format,?…]) | Append to Table in file. |
| HDFStore.get(key) | Retrieve pandas object stored in file |
| HDFStore.select(key[,?where,?start,?stop,?…]) | Retrieve pandas object stored in file, optionally based on where criteria |
| HDFStore.info() | Print detailed information on the store. |
| HDFStore.keys() | Return a (potentially unordered) list of the keys corresponding to the objects stored in the HDFStore. |
| HDFStore.groups() | return a list of all the top-level nodes (that are not themselves a pandas storage object) |
| HDFStore.walk([where]) | Walk the pytables group hierarchy for pandas objects |
Feather
| read_feather(path[,?columns,?use_threads]) | Load a feather-format object from the file path |
Parquet
| read_parquet(path[,?engine,?columns]) | Load a parquet object from the file path, returning a DataFrame. |
SAS
| read_sas(filepath_or_buffer[,?format,?…]) | Read SAS files stored as either XPORT or SAS7BDAT format files. |
SQL
| read_sql_table(table_name,?con[,?schema,?…]) | Read SQL database table into a DataFrame. |
| read_sql_query(sql,?con[,?index_col,?…]) | Read SQL query into a DataFrame. |
| read_sql(sql,?con[,?index_col,?…]) | Read SQL query or database table into a DataFrame. |
Google BigQuery
| read_gbq(query[,?project_id,?index_col,?…]) | Load data from Google BigQuery. |
STATA
| read_stata(filepath_or_buffer[,?…]) | Read Stata file into DataFrame. |
| StataReader.data(**kwargs) | (DEPRECATED) Reads observations from Stata file, converting them into a dataframe |
| StataReader.data_label() | Returns data label of Stata file |
| StataReader.value_labels() | Returns a dict, associating each variable name a dict, associating each value its corresponding label |
| StataReader.variable_labels() | Returns variable labels as a dict, associating each variable name with corresponding label |
| StataWriter.write_file() |
?
2、使用經驗總結
Python語言學習之pandas:DataFrame二維表的簡介、常用函數、常用案例之詳細攻略
?
?
總結
以上是生活随笔為你收集整理的Py之Pandas:Python的pandas库简介、安装、使用方法详细攻略的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: SQL:使用备份向导、SQL命令、导出数
- 下一篇: 成功解决sys.argv[1] Inde