MAT之PSO:利用PSO实现对一元函数y = sin(10*pi*x) ./ x进行求解优化,找到最优个体适应度
生活随笔
收集整理的這篇文章主要介紹了
MAT之PSO:利用PSO实现对一元函数y = sin(10*pi*x) ./ x进行求解优化,找到最优个体适应度
小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.
MAT之PSO:利用PSO實(shí)現(xiàn)對一元函數(shù)y = sin(10*pi*x) ./ x進(jìn)行求解優(yōu)化,找到最優(yōu)個(gè)體適應(yīng)度
?
?
目錄
輸出結(jié)果
代碼設(shè)計(jì)
?
?
?
?
輸出結(jié)果
代碼設(shè)計(jì)
x = 1:0.01:2; y = sin(10*pi*x) ./ x; figure plot(x, y) title('繪制目標(biāo)函數(shù)曲線圖—Jason niu'); hold onc1 = 1.49445; c2 = 1.49445;maxgen = 50; sizepop = 10; Vmax = 0.5; Vmin = -0.5; popmax = 2; popmin = 1;for i = 1:sizepoppop(i,:) = (rands(1) + 1) / 2 + 1; V(i,:) = 0.5 * rands(1); fitness(i) = fun(pop(i,:)); end[bestfitness bestindex] = max(fitness); zbest = pop(bestindex,:); gbest = pop; fitnessgbest = fitness; fitnesszbest = bestfitness; for i = 1:maxgenfor j = 1:sizepopV(j,:) = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));V(j,find(V(j,:)>Vmax)) = Vmax; V(j,find(V(j,:)<Vmin)) = Vmin;pop(j,:) = pop(j,:) + V(j,:);pop(j,find(pop(j,:)>popmax)) = popmax; pop(j,find(pop(j,:)<popmin)) = popmin;fitness(j) = fun(pop(j,:)); endfor j = 1:sizepop if fitness(j) > fitnessgbest(j)gbest(j,:) = pop(j,:); fitnessgbest(j) = fitness(j);endif fitness(j) > fitnesszbestzbest = pop(j,:);fitnesszbest = fitness(j);endend yy(i) = fitnesszbest; end[fitnesszbest zbest] plot(zbest, fitnesszbest,'r*')figure plot(yy) title('PSO:PSO算法(快于GA算法)實(shí)現(xiàn)找到最優(yōu)個(gè)體適應(yīng)度—Jason niu','fontsize',12); xlabel('進(jìn)化代數(shù)','fontsize',12);ylabel('適應(yīng)度','fontsize',12);?
?相關(guān)文章
PSO:利用PSO+ω參數(shù)實(shí)現(xiàn)對一元函數(shù)y = sin(10*pi*x) ./ x進(jìn)行求解優(yōu)化,找到最優(yōu)個(gè)體適應(yīng)度
?
總結(jié)
以上是生活随笔為你收集整理的MAT之PSO:利用PSO实现对一元函数y = sin(10*pi*x) ./ x进行求解优化,找到最优个体适应度的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: MAT之GA:GA优化BP神经网络的初始
- 下一篇: MAT之PSO:利用PSO算法优化二元函