MAT之GRNN/PNN:基于GRNN、PNN两神经网络实现并比较鸢尾花(iris数据集)种类识别正确率、各个模型运行时间对比
生活随笔
收集整理的這篇文章主要介紹了
MAT之GRNN/PNN:基于GRNN、PNN两神经网络实现并比较鸢尾花(iris数据集)种类识别正确率、各个模型运行时间对比
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
MAT之GRNN/PNN:基于GRNN、PNN兩神經網絡實現并比較鳶尾花(iris數據集)種類識別正確率、各個模型運行時間對比
?
目錄
輸出結果
實現代碼
?
?
輸出結果
?
?
實現代碼
load?iris_data.mat?P_train = []; T_train = []; P_test = []; T_test = []; for?i?= 1:3?temp_input = features((i-1)*50+1:i*50,:);temp_output = classes((i-1)*50+1:i*50,:);n =?randperm(50);P_train = [P_train temp_input(n(1:40),:)'];T_train = [T_train temp_output(n(1:40),:)'];P_test = [P_test temp_input(n(41:50),:)'];T_test = [T_test temp_output(n(41:50),:)']; endresult_grnn = []; result_pnn = []; time_grnn = []; time_pnn = [];for?i?= 1:4for?j?=?i:4p_train = P_train(i:j,:);p_test = P_test(i:j,:);t =?cputime;?net_grnn = newgrnn(p_train,T_train);t_sim_grnn = sim(net_grnn,p_test);T_sim_grnn =?round(t_sim_grnn);?t =?cputime?- t;time_grnn = [time_grnn t];result_grnn = [result_grnn T_sim_grnn'];t =?cputime;Tc_train = ind2vec(T_train);net_pnn = newpnn(p_train,Tc_train);Tc_test = ind2vec(T_test);t_sim_pnn = sim(net_pnn,p_test);T_sim_pnn = vec2ind(t_sim_pnn);t =?cputime?- t;time_pnn = [time_pnn t];result_pnn = [result_pnn T_sim_pnn'];end endaccuracy_grnn = []; accuracy_pnn = []; time = []; for?i?= 1:10accuracy_1 =?length(find(result_grnn(:,i) == T_test'))/length(T_test);accuracy_2 =?length(find(result_pnn(:,i) == T_test'))/length(T_test);accuracy_grnn = [accuracy_grnn accuracy_1];accuracy_pnn = [accuracy_pnn accuracy_2]; endresult = [T_test' result_grnn result_pnn] accuracy = [accuracy_grnn;accuracy_pnn] time = [time_grnn;time_pnn]?
?
?
相關文章
MAB之GRNN/PNN:基于GRNN、PNN兩神經網絡實現并比較鳶尾花種類識別正確率、各個模型運行時間對比
?
?
總結
以上是生活随笔為你收集整理的MAT之GRNN/PNN:基于GRNN、PNN两神经网络实现并比较鸢尾花(iris数据集)种类识别正确率、各个模型运行时间对比的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: RBF:RBF基于近红外光谱的汽油辛烷值
- 下一篇: Matlab中解决出现的错误使用 svm