【技术综述】人脸年龄估计研究现状
文章首發(fā)于微信公眾號《與有三學(xué)AI》
【技術(shù)綜述】人臉年齡估計研究現(xiàn)狀
今天給大家?guī)硪黄四樧R別中的年齡估計技術(shù),年齡特征作為人類的一種重要生物特征,計算機(jī)要如何基于人臉圖像估計年齡呢?
?
01概述
簡單地說,基于人臉圖像的年齡估計是指機(jī)器根據(jù)面部圖像推測出人的大概年齡或所屬的年齡范圍( 年齡段)。
基于人臉圖像的年齡估計系統(tǒng)一般分為人臉檢測與定位,年齡特征提取,年齡估計,系統(tǒng)性能評價幾個部分。根據(jù)提取特征方式的不同又分為傳統(tǒng)方法和深度學(xué)習(xí)方法。
同一張圖在不同應(yīng)用中的測定(左商湯右年齡檢測器)
?
不同的人臉在同一應(yīng)用中測定(百度云AI為例)
不同年齡不同膚色在年齡估計系統(tǒng)中評分測試
?
如果基于人臉圖像的年齡估計問題得到解決,那么在日常生活中基于年齡信息的各種人機(jī)交互系統(tǒng)將在現(xiàn)實生活中有著極大的應(yīng)用需求。
市場主流年齡估計軟件包括商湯科技,face++,百度云AI體驗中心,騰訊云AI體驗中心,年齡檢測儀。我們隨機(jī)拿了一些名人照片做測試,總體說來face++在測試集上表現(xiàn)最好。
?
02人臉年齡數(shù)據(jù)集與算法評價指標(biāo)
2.1 公開數(shù)據(jù)集
2.1.1 The IMDB-WIKI dataset數(shù)據(jù)集?【1】
網(wǎng)址:https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/
介紹:從IMDb和維基百科上爬取的名人圖片,根據(jù)照片拍攝時間戳和出生日期計算得到的年齡信息。應(yīng)該是目前最大的人臉年齡數(shù)據(jù)集
大小: 共523051張face images
標(biāo)簽:年齡和性別
?
2.1.2 Adience Benchmark Of Unfiltered Faces For Gender And Age Classification 數(shù)據(jù)集【2】
網(wǎng)址:https://www.openu.ac.il/home/hassner/Adience/data.html#frontalized
介紹:iPhone5或更新的智能手機(jī)拍攝
標(biāo)簽:年齡段(0-2, 4-6, 8-13, 15-20, 25-32, 38-43, 48-53, 60+)
大小:26580張, 2284人
?
2.1.3 Cross-Age Celebrity Dataset (CACD)【3】
網(wǎng)址:http://bcsiriuschen.github.io/CARC/
描述:與數(shù)據(jù)集2.1.1類似
標(biāo)簽:年齡
大小:163446張名人圖片,約4.4G
?
更多數(shù)據(jù)集可自行了解。
2.2 算法評價指標(biāo)
目前常用的年齡估計評價指標(biāo)包括平均絕對誤差( MAE) 和累積指數(shù)( CS) 。
2.2.1 MAE
平均絕對誤差是指估計年齡和真實年齡之間絕對誤差的平均值,其表達(dá)式為?
?
?
2.2.2 CS
年齡估計性能評價中,人們關(guān)注更多的是所估計出的年齡值的絕對誤差范圍是否在人們能接受的范圍內(nèi),因此累積指數(shù)被用于年齡估計的性能評價中,累積指數(shù)的定義如下:
?
式中,Nθ≤j表示測試圖像中估計年齡與真實年齡的絕對誤差不超過j年的測試圖像數(shù),分母N為所有測試圖像的總數(shù)。因此CS越大,說明估計年齡越接近真實年齡,年齡估計越準(zhǔn)確。
?
03 傳統(tǒng)方法研究思路
傳統(tǒng)方法研究思路,自然就是手動提取特征,我們基于參考文獻(xiàn)【4】來做說明。
傳統(tǒng)方法即手動提取特征,傳統(tǒng)方法可粗略劃分為手動提取特征和年齡估計兩個階段。
根據(jù)特征所反映的人臉信息,可以將常用的人臉年齡特征分為形狀特征、紋理特征、代數(shù)特征以及混合特征。由于每種類型的特征均從不同角度描述了人臉圖像,為了充分利用各種特征的優(yōu)點,研究人員通常綜合集成多種人臉特征,并采用不同的數(shù)學(xué)方法對其進(jìn)行處理,從而形成了各具特色的面部年齡特征提取模型。常見的特征提取模型包括人體測量學(xué)模型( anthropometric models) 、特征子空間模型( AGES) 、柔性模型( flexible models) 、流形學(xué)習(xí)( age manifold)以及外觀模型( appearance model) 等。
3.1特征提取模型
3.1.1 人體測量學(xué)模型
a) 主要內(nèi)容:
人體測量學(xué)模型利用了人臉的幾何形狀特征進(jìn)行年齡分類,主要是描述隨著年齡的增長人臉整體輪廓變化的數(shù)學(xué)規(guī)律,它所測量的是人臉的一種結(jié)構(gòu)信息。主要過程歸納為人臉輪廓檢測,人臉特征點定位,多種幾何比例測量(如兩眼之間的間距、兩眼之間的間距等),最后利用幾何比例進(jìn)行年齡段的區(qū)分。
b) 適用范圍:
主要適合于對未成年人進(jìn)行年齡分類
c) 局限性:
由于該模型對人體姿態(tài)變換比較敏感,因此主要適用于提取正面人臉圖像的年齡特征
?
3.1.2?柔性模型
a) 主要內(nèi)容:
柔性模型將人臉的形狀與灰度/紋理有機(jī)結(jié)合起來,從整體入手,充分提取人臉圖像的形狀信息和全局紋理信息,可以看作是人體測量學(xué)模型的升級版,其典型的代表是主動形狀模型( ASM) 和主動外觀模型( AAM)。
b) 適用范圍:
該模型可以更好地適應(yīng)復(fù)雜圖像的特征點定位和特征提取,不僅適用于對青少年進(jìn)行年齡分類,也適用于對中老年人進(jìn)行分類。
c) 局限性:?
? 1) 隨著年齡的增長,人臉紋理的變化更多地體現(xiàn)在局部區(qū)域,如額頭、眼角、臉頰等,因此采用該模型進(jìn)行特征提取時,將會丟失掉很多局部紋理信息,可能不利于對老年人進(jìn)行年齡估計。?
? 2) 在訓(xùn)練過程中,柔性模型通常將形狀和紋理空間分別進(jìn)行訓(xùn)練,這將會損失掉大量紋理和形狀之間的有效信息。?
? 3) 此外柔性模型的確定依賴于很多臉部特征點的準(zhǔn)確定位,一旦定位出現(xiàn)誤差,這種誤差將很容易在后續(xù)處理中被放大。
?
3.1.3?外觀模型
a) 主要內(nèi)容:
外觀模型將人臉幾何特征與全局信息,局部信息(如面部紋理信息、頻率信息和膚色信息)相融合進(jìn)行人臉描述,進(jìn)而進(jìn)行年齡估計,可以看作是柔性模型的升級版,目前應(yīng)用最為廣泛。
b) 適用范圍:
它較好地描述了面部的紋理特性,并常常與形狀特征相融合,可以較好地實現(xiàn)全年齡段的年齡估計。
c) 局限性:
只能用于粗略估計,給出一個大概的年齡段。
3.2 年齡估計
基于人臉圖像的年齡估計是一類“特殊”的模式識別問題: 一方面由于每個年齡值都可以看作是一個類,所以年齡估計可以被看作是一種分類問題;另一方面,年齡值的增長是一個有序數(shù)列的不斷變化過程,因此年齡估計也可被視為一種回歸問題。有研究者通過對已有年齡估計工作進(jìn)行總結(jié)后認(rèn)為: 針對不同的年齡數(shù)據(jù)庫和不同的年齡特征、分類模式和回歸模式具有各自的優(yōu)越性,因此將二者有機(jī)融合可以有效提高年齡估計的精度。由于傳統(tǒng)的年齡估計模式忽略了人臉?biāo)ダ系膭討B(tài)性,最近研究人員又將Rank模型引入到年齡估計方法中,并取得了較好的效果。
3.2.1 分類模型
每個年齡值都可以看作是一個類,所以年齡估計可以被看作是一種分類問題。分類模式采用模式分類的理念與方法實現(xiàn)年齡的估計。可以分為對年齡段進(jìn)行分類和對具體年齡值進(jìn)行分類。
3.2.2 回歸模型
年齡值的增長是一個有序數(shù)列的不斷變化過程,因此年齡估計也可被視為一種回歸性問題。回歸模式運用回歸分析的方法,通過建立表征人臉年齡變化規(guī)律的函數(shù)模型來實現(xiàn)年齡的估計。
3.2.3 Rank模型
人類衰老是一個“動態(tài)”變化的個性化過程。傳統(tǒng)的基于分類模式的年齡估計把年齡分成了若干個年齡段,沒有考慮到不同年齡之間的相互關(guān)系,因此損失了很多重要的信息; 傳統(tǒng)的回歸模式雖然考慮到了年齡之間的相關(guān)性,但是卻假設(shè)人的衰老是一個“靜態(tài)”過程,即不同年齡的人的衰老變化規(guī)律一致。此外,在日常生活中,我們對一個人進(jìn)行年齡判定時,總是將該人臉與我們熟悉的且知道相應(yīng)年齡的人臉圖像進(jìn)行比較,通過綜合大量的比較結(jié)果進(jìn)行年齡判斷。
因此,年齡估計過程可以看成是對大量人臉有效信息對進(jìn)行比較的過程,也就是通過若干組二值分類結(jié)果就可以得到相應(yīng)的年齡估計值,通過尋找當(dāng)前年齡標(biāo)簽在年齡序列中的相對位置來確定最終的年齡值,從而有效克服了傳統(tǒng)的年齡估計方法忽略了人類面部衰老過程中的動態(tài)性、模糊性以及個性化的特點.
3.2.4 混合年齡估計模型
不同的估計模式具有不同的優(yōu)勢,因此可以將各種估計模式綜合起來進(jìn)行年齡的估計。所謂混合年齡估計模式就是使用多個不同的年齡估計器代替單個年齡估計器來進(jìn)行年齡估計。
?
04 深度學(xué)習(xí)方法研究思路
近年來伴隨著深度學(xué)習(xí)的火爆,應(yīng)用深度學(xué)習(xí)方法解決人臉年齡估計問題成為了主流。
實際上,就是利用深度學(xué)習(xí)自己學(xué)習(xí)特征,替換掉了上面?zhèn)鹘y(tǒng)方法提取的一系列特征。在大數(shù)據(jù)的加持下,模型的魯棒性遠(yuǎn)超傳統(tǒng)方法。下圖就是文獻(xiàn)【1】,奪得ChaLearn LAP 2015 challenge的pipeline。
該文是多個模型的融合,將年級估計問題作為一個0~100歲的101類的分類問題來研究。
?
有的文獻(xiàn)【5】會利用神經(jīng)網(wǎng)絡(luò)提取特征后做一些PCA的維度,實際上筆者認(rèn)為沒有這個必要。
在經(jīng)過正確的人臉檢測和對齊后,現(xiàn)有的深度學(xué)習(xí)模型完全能夠end-to-end的解決這個問題。
?
05 總結(jié)
基于人臉的年齡估計仍然是一個可以繼續(xù)研究的問題,因為以美顏等為代表的技術(shù),干擾著算法的準(zhǔn)確性。
不過,年齡的估計本身就不一定能反映真實的生理年齡,有的人就是比同齡人顯得年輕很多或者老很多,所以該技術(shù)不可能像指紋識別或者人臉識別一樣,在非常重要的應(yīng)用中獨當(dāng)一面,而只能作為輔助算法。不過,研究研究還是很好玩的。
?
同時,在我的知乎專欄也會開始同步更新這個模塊,歡迎來交流
https://zhuanlan.zhihu.com/c_151876233
注:部分圖片來自網(wǎng)絡(luò)
感謝各位看官的耐心閱讀,不足之處希望多多指教。后續(xù)內(nèi)容將會不定期奉上,歡迎大家關(guān)注有三公眾號 有三AI!
?
?
?
?
總結(jié)
以上是生活随笔為你收集整理的【技术综述】人脸年龄估计研究现状的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 【技术综述】人脸颜值研究综述
- 下一篇: 【技术综述】有三说GANs(上)