zoj 3547 The Boss on Mars
生活随笔
收集整理的這篇文章主要介紹了
zoj 3547 The Boss on Mars
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
需要用到概率論的容斥定理以及計算1 ^ 4 + 2 ^ 4 + ……+ n ^ 4的計算公式1^4+2^4+……+n^4=n(n+1)(2n+1)(3n^2+3n-1)/30
?
#pragma comment(linker,"/STACK:1024000000,1024000000") #include <cstdio> #include <cmath>#define LL long long const LL mod = 1e9 + 7; #define MAX 10000int len, prime[MAX], num[30]; bool vis[MAX + 5]; LL n, sum, pi;void get_prime(){len = 0;for(int i = 2; i<=MAX; ++i){if(!vis[i]) prime[len++] = i;for(int j = i * i; j <= MAX; j+=i) vis[j] = 1;} }LL power(LL x, LL y){if(y == 0) return 1;if(y == 1) return x;LL v = power(x, y / 2);v = v * v % mod;if(y % 2 == 1) v = v * x % mod;return v; }LL cal(LL v){return v * (v + 1) % mod * (v * 2 + 1) % mod * (v * v * 3 % mod + v * 3 - 1 + mod) % mod * pi % mod; }void dfs(int cnt, int p, int pos, LL s){if(cnt % 2 == 1) sum = (sum + cal(n / s) * s % mod * s % mod * s % mod * s % mod) % mod;else sum = (sum - cal(n / s) * s % mod * s % mod * s % mod * s % mod + mod) % mod;for(int i = pos; i < p; ++i)dfs(cnt + 1, p, i + 1, s * num[i] % mod); }int main () {//freopen ("in.txt", "r", stdin);get_prime();//for(int i = 0; i < len; ++i) printf("%d ", prime[i]);pi = power(30, mod - 2);int t;scanf ("%d", &t);while (t--){int x, p = 0;scanf("%d", &x);n = x;sum = cal(n);//printf("%d\n", n);for(int i = 0; i < len; ++i){int v = prime[i];if(v > x) break;if(x % v == 0) num[p++] = v;while(x % v ==0) x /= v;}if(x > 1) num[p++] = x;//for(int i = 0; i < p; ++i) printf("%d ", num[i]);for (int i = 0; i < p; ++i)dfs(0, p, i + 1, (LL)num[i]);printf("%lld\n", sum);}return 0; }?
?
總結
以上是生活随笔為你收集整理的zoj 3547 The Boss on Mars的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: ChartDirector Python
- 下一篇: weblogic部署ssh2应用出现异常