tensorflow 1.0 学习:模型的保存与恢复(Saver)
將訓練好的模型參數保存起來,以便以后進行驗證或測試,這是我們經常要做的事情。tf里面提供模型保存的是tf.train.Saver()模塊。
模型保存,先要創建一個Saver對象:如
saver=tf.train.Saver()在創建這個Saver對象的時候,有一個參數我們經常會用到,就是?max_to_keep 參數,這個是用來設置保存模型的個數,默認為5,即?max_to_keep=5,保存最近的5個模型。如果你想每訓練一代(epoch)就想保存一次模型,則可以將?max_to_keep設置為None或者0,如:
saver=tf.train.Saver(max_to_keep=0)但是這樣做除了多占用硬盤,并沒有實際多大的用處,因此不推薦。
當然,如果你只想保存最后一代的模型,則只需要將max_to_keep設置為1即可,即
saver=tf.train.Saver(max_to_keep=1)創建完saver對象后,就可以保存訓練好的模型了,如:
saver.save(sess,'ckpt/mnist.ckpt',global_step=step)第一個參數sess,這個就不用說了。第二個參數設定保存的路徑和名字,第三個參數將訓練的次數作為后綴加入到模型名字中。
saver.save(sess, 'my-model', global_step=0) ==> ? ? ?filename: 'my-model-0'
...
saver.save(sess, 'my-model', global_step=1000) ==> filename: 'my-model-1000'
看一個mnist實例:
# -*- coding: utf-8 -*- """ Created on Sun Jun 4 10:29:48 2017@author: Administrator """ import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=False)x = tf.placeholder(tf.float32, [None, 784]) y_=tf.placeholder(tf.int32,[None,])dense1 = tf.layers.dense(inputs=x, units=1024, activation=tf.nn.relu,kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),kernel_regularizer=tf.nn.l2_loss) dense2= tf.layers.dense(inputs=dense1, units=512, activation=tf.nn.relu,kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),kernel_regularizer=tf.nn.l2_loss) logits= tf.layers.dense(inputs=dense2, units=10, activation=None,kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),kernel_regularizer=tf.nn.l2_loss)loss=tf.losses.sparse_softmax_cross_entropy(labels=y_,logits=logits) train_op=tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss) correct_prediction = tf.equal(tf.cast(tf.argmax(logits,1),tf.int32), y_) acc= tf.reduce_mean(tf.cast(correct_prediction, tf.float32))sess=tf.InteractiveSession() sess.run(tf.global_variables_initializer())saver=tf.train.Saver(max_to_keep=1) for i in range(100):batch_xs, batch_ys = mnist.train.next_batch(100)sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})print('epoch:%d, val_loss:%f, val_acc:%f'%(i,val_loss,val_acc))saver.save(sess,'ckpt/mnist.ckpt',global_step=i+1) sess.close()代碼中紅色部分就是保存模型的代碼,雖然我在每訓練完一代的時候,都進行了保存,但后一次保存的模型會覆蓋前一次的,最終只會保存最后一次。因此我們可以節省時間,將保存代碼放到循環之外(僅適用max_to_keep=1,否則還是需要放在循環內).
在實驗中,最后一代可能并不是驗證精度最高的一代,因此我們并不想默認保存最后一代,而是想保存驗證精度最高的一代,則加個中間變量和判斷語句就可以了。
saver=tf.train.Saver(max_to_keep=1) max_acc=0 for i in range(100):batch_xs, batch_ys = mnist.train.next_batch(100)sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})print('epoch:%d, val_loss:%f, val_acc:%f'%(i,val_loss,val_acc))if val_acc>max_acc:max_acc=val_accsaver.save(sess,'ckpt/mnist.ckpt',global_step=i+1) sess.close()如果我們想保存驗證精度最高的三代,且把每次的驗證精度也隨之保存下來,則我們可以生成一個txt文件用于保存。
saver=tf.train.Saver(max_to_keep=3) max_acc=0 f=open('ckpt/acc.txt','w') for i in range(100):batch_xs, batch_ys = mnist.train.next_batch(100)sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})print('epoch:%d, val_loss:%f, val_acc:%f'%(i,val_loss,val_acc)) f.write(str(i+1)+', val_acc: '+str(val_acc)+'\n')if val_acc>max_acc:max_acc=val_accsaver.save(sess,'ckpt/mnist.ckpt',global_step=i+1) f.close() sess.close()?
模型的恢復用的是restore()函數,它需要兩個參數restore(sess, save_path),save_path指的是保存的模型路徑。我們可以使用tf.train.latest_checkpoint()來自動獲取最后一次保存的模型。如:
model_file=tf.train.latest_checkpoint('ckpt/') saver.restore(sess,model_file)則程序后半段代碼我們可以改為:
sess=tf.InteractiveSession() sess.run(tf.global_variables_initializer())is_train=False saver=tf.train.Saver(max_to_keep=3)#訓練階段 if is_train:max_acc=0f=open('ckpt/acc.txt','w')for i in range(100):batch_xs, batch_ys = mnist.train.next_batch(100)sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})print('epoch:%d, val_loss:%f, val_acc:%f'%(i,val_loss,val_acc)) f.write(str(i+1)+', val_acc: '+str(val_acc)+'\n')if val_acc>max_acc:max_acc=val_accsaver.save(sess,'ckpt/mnist.ckpt',global_step=i+1)f.close()#驗證階段 else:model_file=tf.train.latest_checkpoint('ckpt/')saver.restore(sess,model_file)val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})print('val_loss:%f, val_acc:%f'%(val_loss,val_acc)) sess.close()標紅的地方,就是與保存、恢復模型相關的代碼。用一個bool型變量is_train來控制訓練和驗證兩個階段。
整個源程序:
# -*- coding: utf-8 -*- """ Created on Sun Jun 4 10:29:48 2017@author: Administrator """ import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=False)x = tf.placeholder(tf.float32, [None, 784]) y_=tf.placeholder(tf.int32,[None,])dense1 = tf.layers.dense(inputs=x, units=1024, activation=tf.nn.relu,kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),kernel_regularizer=tf.nn.l2_loss) dense2= tf.layers.dense(inputs=dense1, units=512, activation=tf.nn.relu,kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),kernel_regularizer=tf.nn.l2_loss) logits= tf.layers.dense(inputs=dense2, units=10, activation=None,kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),kernel_regularizer=tf.nn.l2_loss)loss=tf.losses.sparse_softmax_cross_entropy(labels=y_,logits=logits) train_op=tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss) correct_prediction = tf.equal(tf.cast(tf.argmax(logits,1),tf.int32), y_) acc= tf.reduce_mean(tf.cast(correct_prediction, tf.float32))sess=tf.InteractiveSession() sess.run(tf.global_variables_initializer())is_train=True saver=tf.train.Saver(max_to_keep=3)#訓練階段 if is_train:max_acc=0f=open('ckpt/acc.txt','w')for i in range(100):batch_xs, batch_ys = mnist.train.next_batch(100)sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})print('epoch:%d, val_loss:%f, val_acc:%f'%(i,val_loss,val_acc))f.write(str(i+1)+', val_acc: '+str(val_acc)+'\n')if val_acc>max_acc:max_acc=val_accsaver.save(sess,'ckpt/mnist.ckpt',global_step=i+1)f.close()#驗證階段 else:model_file=tf.train.latest_checkpoint('ckpt/')saver.restore(sess,model_file)val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})print('val_loss:%f, val_acc:%f'%(val_loss,val_acc)) sess.close() View Code?參考文章:http://blog.csdn.net/u011500062/article/details/51728830
總結
以上是生活随笔為你收集整理的tensorflow 1.0 学习:模型的保存与恢复(Saver)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: linux下汇编实例
- 下一篇: 王者荣耀用什么开发引擎做的?