绘制不同光照条件下识别率多项式拟合曲线图(暂未找到最佳拟合曲线)
生活随笔
收集整理的這篇文章主要介紹了
绘制不同光照条件下识别率多项式拟合曲线图(暂未找到最佳拟合曲线)
小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.
文章目錄
- 第一種方法
- 第二種方法
第一種方法
# -*- coding: utf-8 -*- """ @File : plot.py @Time : 2020/2/24 8:55 @Author : Dontla @Email : sxana@qq.com @Software: PyCharm """import matplotlib.pyplot as pltimport numpy as np# 如發(fā)現(xiàn)格式不對(duì)可用記事本或notepad批量替換 keyword = {'11:30.0': (50000, 13.96), '12:16.0': (54500, 13.20), '13:15.0': (47500, 12.48),'14:22.0': (55450, 12.44), '14:35.0': (55430, 13.72), '17:03.0': (13990, 11.00),'17:38.0': (9058, 11.60), '17:57.0': (5044, 12.46), '18:20.0': (1300, 13.80),'18:25.0': (900, 13.90), '18:28.0': (700, 13.96), '18:31.0': (570, 13.90),'18:33.0': (500, 13.94), '18:34.0': (450, 13.9), '18:35.0': (440, 13.88),'18:36.0': (360, 13.60), '18:37.0': (300, 13.8), '18:39.0': (250, 13.4),'18:40.0': (200, 13.34),'18:42.0': (150, 13.10), '18:44.0': (100, 11.80), '18:44.2': (90, 11.34),'18.44.4': (80, 11.38), '18:44.8': (70, 9.50), '18:45.0': (60, 9.20),'18:46.0': (50, 11.9), '18:46.3': (40, 10.8), '18:46.6': (30, 9.20),'18:49.0': (20, 9.70), '18:49.6': (15, 6.90), '18:50.3': (13, 4.70),'18:50.9': (12, 3.80), '18:51.5': (11, 2.60), '18:52.2': (10, 1.70),'18:52.9': (9, 1.00), '18:53.6': (8, 0.2), '18:54.3': (7, 0.06),'18:55.0': (6, 0.02)}data = []for key in keyword:data.append(keyword[key])data = np.array(data) # print(data) # [[5.000e+04 1.396e+01] # [5.450e+04 1.320e+01] # [4.750e+04 1.248e+01] # [5.545e+04 1.244e+01] # [5.543e+04 1.372e+01] # [1.399e+04 1.100e+01] # [9.058e+03 1.160e+01] # [5.044e+03 1.246e+01] # [1.300e+03 1.380e+01] # [9.000e+02 1.390e+01] # [7.000e+02 1.396e+01] # [2.000e+02 1.334e+01] # [1.500e+02 1.310e+01] # [1.000e+02 1.180e+01] # [9.000e+01 1.134e+01] # [8.000e+01 1.138e+01] # [7.000e+01 9.500e+00] # [6.000e+01 9.200e+00] # [5.000e+01 1.190e+01] # [4.000e+01 1.080e+01] # [3.000e+01 9.200e+00] # [2.000e+01 9.700e+00] # [1.500e+01 6.900e+00] # [1.300e+01 4.700e+00] # [1.200e+01 3.800e+00] # [1.100e+01 2.600e+00] # [1.000e+01 1.700e+00] # [9.000e+00 1.000e+00] # [8.000e+00 2.000e-01] # [7.000e+00 6.000e-02] # [6.000e+00 2.000e-02]]x = data[:, 0] # print(x) # [5.000e+04 5.450e+04 4.750e+04 5.545e+04 5.543e+04 1.399e+04 9.058e+03 # 5.044e+03 1.300e+03 9.000e+02 7.000e+02 2.000e+02 1.500e+02 1.000e+02 # 9.000e+01 8.000e+01 7.000e+01 6.000e+01 5.000e+01 4.000e+01 3.000e+01 # 2.000e+01 1.500e+01 1.300e+01 1.200e+01 1.100e+01 1.000e+01 9.000e+00 # 8.000e+00 7.000e+00 6.000e+00] y = data[:, 1] # print(y) # [13.96 13.2 12.48 12.44 13.72 11. 11.6 12.46 13.8 13.9 13.96 13.34 # 13.1 11.8 11.34 11.38 9.5 9.2 11.9 10.8 9.2 9.7 6.9 4.7 # 3.8 2.6 1.7 1. 0.2 0.06 0.02]ind = np.lexsort((x,)) # print(ind) # [30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 # 6 5 2 0 1 4 3]data_sort = [(x[i], y[i]) for i in ind]# print(data_sort) # [(6.0, 0.02), (7.0, 0.06), (8.0, 0.2), (9.0, 1.0), (10.0, 1.7), (11.0, 2.6), (12.0, 3.8), (13.0, 4.7), (15.0, 6.9), (20.0, 9.7), (30.0, 9.2), (40.0, 10.8), (50.0, 11.9), (60.0, 9.2), (70.0, 9.5), (80.0, 11.38), (90.0, 11.34), (100.0, 11.8), (150.0, 13.1), (200.0, 13.34), (700.0, 13.96), (900.0, 13.9), (1300.0, 13.8), (5044.0, 12.46), (9058.0, 11.6), (13990.0, 11.0), (47500.0, 12.48), (50000.0, 13.96), (54500.0, 13.2), (55430.0, 13.72), (55450.0, 12.44)]x_sort, y_sort = np.array(data_sort)[:, 0], np.array(data_sort)[:, 1]# 用3次多項(xiàng)式擬合 可以改為5 次多項(xiàng)式。。。。 返回三次多項(xiàng)式系數(shù) z1 = np.polyfit(x_sort, y_sort, 3) p1 = np.poly1d(z1)# 在屏幕上打印擬合多項(xiàng)式 print(p1) # 3 2 # 2.534e-13 x - 2.506e-08 x + 0.000714 x + 7.821# 設(shè)置繪制間隔 x_lin = np.arange(0, 60000, 5)yvals = p1(x_lin) # 也可以使用yvals=np.polyval(z1,x)plot1 = plt.plot(x_sort, y_sort, '*', label='original values') plot2 = plt.plot(x_lin, yvals, 'r', label='polyfit values')# 限制繪制上下限 plt.ylim(0, 16)plt.xlabel('Illumination/lm')plt.ylabel('Detect num/pcs')plt.legend(loc=4) # 指定legend的位置,讀者可以自己help它的用法plt.title('polyfitting')plt.show()plt.savefig('p1.png')結(jié)果:
第二種方法
暫未找到
總結(jié)
以上是生活随笔為你收集整理的绘制不同光照条件下识别率多项式拟合曲线图(暂未找到最佳拟合曲线)的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: 解决pip安装时速度慢的问题 镜像源(p
- 下一篇: numpy报错:ValueError: