Intel Realsense D435 深度图为什么会出现残影?(Invalid Depth Band 无效深度带)(黑洞)
現(xiàn)象描述
官方回復(fù)1
圖像最左側(cè)的噪聲通常與稱為“無效深度帶”的現(xiàn)象有關(guān),該現(xiàn)象會(huì)在相機(jī)靠近物體時(shí)擴(kuò)大。
在當(dāng)前版本的400系列攝像機(jī)的數(shù)據(jù)表文檔的第59-60頁中對(duì)此進(jìn)行了描述。
The depth data generated with stereo vision uses the left imager as the reference for stereo matching resulting in a non-overlap region in the field of view of left and right imagers where we will not have depth data at the left edge of the frame.
Closer scenes result in a wider invalid depth band than scenes at larger distances.
用立體視覺生成的深度數(shù)據(jù)將左成像器用作立體匹配的參考,從而在左成像器和右成像器的視場(chǎng)中形成一個(gè)非重疊區(qū)域,在該區(qū)域中,幀的左邊緣將沒有深度數(shù)據(jù)。
與距離較遠(yuǎn)的場(chǎng)景相比,較近的場(chǎng)景會(huì)導(dǎo)致更寬的無效深度范圍。
官方回復(fù)2
I thought very carefully about your question. In the past, some users have taken the approach of removing invalid depth pixels from the image by converting them to a value of zero.
I wonder if trying to use post-processing filters to adjust invalid pixels may be easier.
https://dev.intelrealsense.com/docs/post-processing-filters
A tutorial for using post-processing filters in Python code is in the link below.
https://github.com/IntelRealSense/librealsense/blob/jupyter/notebooks/depth_filters.ipynb
我非常仔細(xì)地考慮過您的問題。 過去,一些用戶采用了通過將無效深度像素轉(zhuǎn)換為零值來從圖像中刪除無效深度像素的方法。
我不知道嘗試使用后處理濾鏡來調(diào)整無效像素是否更容易。
https://dev.intelrealsense.com/docs/post-processing-filters
下面的鏈接中有一個(gè)在Python代碼中使用后處理過濾器的教程。
https://github.com/IntelRealSense/librealsense/blob/jupyter/notebooks/depth_filters.ipynb
參考文章:Why is there some afterimage in my depth_image? #5456
總結(jié)
以上是生活随笔為你收集整理的Intel Realsense D435 深度图为什么会出现残影?(Invalid Depth Band 无效深度带)(黑洞)的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Intel Realsense D435
- 下一篇: Intel Realsense D435