人体姿态估计论文总结 (2D + 视频)
2016: DeepCut: Joint Subset Partition and Labeling for Multi Person Pose Estimation, Pishchulin etc, CVPR 2016
2016: DeeperCut: A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model, Insafutdinov, ECCV 2016
2017: Multi-Context Attention for Human Pose Estimation, Chu etc, CVPR 2017
2017:OpenPose:Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields, CVPR 2017
2017:Associative Embedding: End-to-End Learning for Joint Detection and Grouping,? NIPS 2017
2017:RMPE: Regional Multi-Person Pose Estimation(2017)上海交通大學???? 自上而下
2018:CPN: Cascaded Pyramid Network for Multi-Person Pose Estimation,? CVPR 2017
2018:Deeply Learned Compositional Models for Human Pose Estimation, ECCV 2018
2018:MSPN: Rethinking on Multi-Stage Networks for Human Pose Estimation,? Arxiv 2018
2019: HRNet: Deep High-Resolution Representation Learning for Human Pose Estimation CVPR 2019
2020:UniPose: Unified Human Pose Estimation in Single Images and Videos?? CVPR 2020
2020:Delving Into Unbiased Data Processing for Human Pose Estimation????? CVPR 2020
2020:HigherHRNet: Scale-Aware Representation Learning for Bottom-Up Human Pose Estimation? CVPR 2020
2020:Distribution-Aware Coordinate Representation for Human Pose Estimation? CVPR 2020?
2020:Mixture Dense Regression for Object Detection and Human Pose Estimation?? CVPR 2020?
2021:Deep Dual Consecutive Network for Human Pose Estimation?? CVPR 2021
2021:Rethinking the Heatmap Regression for Bottom-up Human Pose Estimation???? CVPR 2021
2021:FCPose: Fully Convolutional Multi-Person Pose Estimation with Dynamic Instance-Aware Convolutions CVPR
2021:ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search???? CVPR 2021
其他:
Blaze Pose
PoseNet
Media Pipe
PoseEstimation-TFlite
movenet
視頻:
1、2018: Simple Baselines for Human Pose Estimation and Tracking, Xiao etc, ECCV 2018
2、2020: Combining Detection and Tracking for Human Pose Estimation in Videos?? CVPR 2020? Manchen Wang AWS Rekognition
人體姿態估計常用評估指標
Percentage of Correct Parts (PCP)
檢測到正確部位的比例。在PCP中認為一個骨骼(limb)被檢測到的標準是,
骨骼的兩個關節點的位置與真實關節點的位置的距離小于骨骼的長度的一半。
Percent of Detected Joints (PDJ)
檢測到的關節點的比例。在PDJ中認為一個關節被檢測到的標準是,
關節的位置與真實位置的距離小于軀干對角點的長度(如left shoulder到right hip的距離)的一個比例值。
Percentage of Correct Keypoints (PCK)
關鍵點被準確檢測的比例。計算檢測的關鍵點與其對應的groundtruth間的歸一化距離小于設定閾值的比例。
FLIC 中是以軀干直徑作為歸一化參考。MPII 中是以頭部長度作為歸一化參考,即 PCKh。
Average Precision (AP)
平均精確度。類似目標檢測,將在真實目標和預測值目標之間的匹配程度的閾值度量
由目標檢測中的每個目標檢測框的交并比(IOU)改為每個目標的關鍵點相似度(object keypoint similarity, OKS)。
reference: 人體姿態估計綜述_seiyaaa的專欄-CSDN博客_人體姿態估計
總結
以上是生活随笔為你收集整理的人体姿态估计论文总结 (2D + 视频)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Atom 相关配置备份
- 下一篇: ubuntu 更换系统软件源 和 pip