python回归取残差_如何用sklearn拟合线性回归后的残差方差
讓我們來定義一下y_true = np.array([3, -0.5, 2, 7])
y_pred = np.array([2.5, 0.0, 2, 8])
平均絕對誤差可定義為
^{pr2}$
絕對誤差方差為np.var(np.abs(y_true - y_pred)) # 0.125
誤差方差為np.var((y_true - y_pred)) # 0.3125
現在如何用scikit-learn實現它?在from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
# X and target data and train test split
boston = datasets.load_boston()
X, y = boston.data, boston.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
# initialize and fit to your train data and predict on test data
clf = LinearRegression()
clf.fit(X_train, y_train)
preds = clf.predict(X_test)
# evaluate
mean_absolute_error(y_test, preds) == np.mean(np.abs(y_test - preds))
# get the variance of (absolute) residuals
np.var(np.abs(y_test - preds))
np.var((y_test - preds))
總結
以上是生活随笔為你收集整理的python回归取残差_如何用sklearn拟合线性回归后的残差方差的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 标题隐藏_头条官方课程没看就想起好标题?
- 下一篇: python django框架如何导出_