(hdu step 7.2.1)The Euler function(欧拉函数模板题——求phi[a]到phi[b]的和)
題目:
The Euler function |
| Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) |
| Total Submission(s): 166 Accepted Submission(s): 96 |
| ? |
| Problem DescriptionThe Euler function phi is an important kind of function in number theory, (n) represents the amount of the numbers which are smaller than n and coprime to n, and this function has a lot of beautiful characteristics. Here comes a very easy question: suppose you are given a, b, try to calculate (a)+ (a+1)+....+ (b) |
| InputThere are several test cases. Each line has two integers a, b (2<a<b<3000000). |
| Output ????????????Output the result of (a)+ (a+1)+....+ (b) |
| Sample Input3 100 |
| Sample Output3042 |
| ? |
| Source2009 Multi-University Training Contest 1 - Host by TJU |
| Recommendgaojie |
題目分析:
? ? ? ? ? ? ? ?歐拉函數,簡單題。
直接暴力這道題就能過。。。。下面簡介一下歐拉函數的一些知識。
1、定義:對于正整數n,φ(n)是小于或等于n的正整數中,與n互質的數的數目。
比如:φ(8)=4。由于1。3,5,7均和8互質。
2、性質:1)若p是質數。φ(p)=?p-1.
2)若n是質數p的k次冪,φ(n)=(p-1)*p^(k-1)。由于除了p的倍數都與n互質
3)歐拉函數是積性函數,若m,n互質,φ(mn)= φ(m)φ(n).
依據這3條性質我們就能夠推出一個整數的歐拉函數的公式。由于一個數總能夠寫成一些質數的乘積的形式。
E(k)=(p1-1)(p2-1)...(pi-1)*(p1^(a1-1))(p2^(a2-1))...(pi^(ai-1))
=?k*(p1-1)(p2-1)...(pi-1)/(p1*p2*...*pi)
=?k*(1-1/p1)*(1-1/p2)...(1-1/pk)
在程序中利用歐拉函數例如以下性質,能夠高速求出歐拉函數的值(a為N的質因素)
若(?N%a?==0&&(N/a)%a?==0)則有:E(N)=?E(N/a)*a;
若(?N%a?==0&&(N/a)%a?!=0)則有:E(N)=?E(N/a)*(a-1);
代碼例如以下:
/** a1.cpp** Created on: 2015年3月19日* Author: Administrator*/#include <iostream> #include <cstdio>using namespace std;const int maxn = 3000001;int phi[maxn];/*** 初始化歐拉數組.* phi[8]: 表示從1~8與8互質的元素的個數**/ void prepare(){int i;for(i = 1 ; i < maxn ; ++i){phi[i] = i;}int j;for(i = 2 ; i < maxn ; ++i){if(phi[i] == i){for(j = i ; j < maxn ; j += i){phi[j] = phi[j]/i*(i-1);}}} }int main(){prepare();int a,b;while(scanf("%d%d",&a,&b)!=EOF){long long ans = 0;int i;for(i = a ; i <= b ; ++i){//暴力求phi[a]到phi[b]之間的和ans += phi[i];}printf("%lld\n",ans);}return 0; }
下面貼一個TLE了的版本號:
TLE的原因非常僅僅管,由于每次算phi[i],它都掉了一次phi()。運算量太大。
/** POJ_2407.cpp** Created on: 2013年11月19日* Author: Administrator*/#include <iostream> #include <cstdio> #include <cstring>using namespace std;typedef long long ll;const int maxn = 1000015;bool u[maxn]; ll su[maxn]; ll num;ll gcd(ll a, ll b) {if (b == 0) {return a;}return gcd(b, a % b); }void prepare() {//歐拉篩法產生素數表ll i, j;memset(u, true, sizeof(u));for (i = 2; i <= 1000010; ++i) {if (u[i]) {su[++num] = i;}for (j = 1; j <= num; ++j) {if (i * su[j] > 1000010) {break;}u[i * su[j]] = false;if (i % su[j] == 0) {break;}}} }ll phi(ll x) {//歐拉函數,用于求[1,x)中與x互質的整數的個數ll ans = 1;int i, j, k;for (i = 1; i <= num; ++i) {if (x % su[i] == 0) {j = 0;while (x % su[i] == 0) {++j;x /= su[i];}for (k = 1; k < j; ++k) {ans = ans * su[i] % 1000000007ll;}ans = ans * (su[i] - 1) % 1000000007ll;if (x == 1) {break;}}}if (x > 1) {ans = ans * (x - 1) % 1000000007ll;}return ans; }int main(){prepare();long long a;long long b;while(scanf("%lld%lld",&a,&b)!=EOF){long long ans = 0;long long i;for(i = a ; i <= b ; ++i){ans += phi(i);}printf("%lld\n",ans);}return 0; }
總結
以上是生活随笔為你收集整理的(hdu step 7.2.1)The Euler function(欧拉函数模板题——求phi[a]到phi[b]的和)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: C++ STL快速入门
- 下一篇: iOS之widget开发(Today E