Factors of Factorial(AtCoder-2286)
生活随笔
收集整理的這篇文章主要介紹了
Factors of Factorial(AtCoder-2286)
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
Problem Description
You are given an integer N. Find the number of the positive divisors of N!, modulo 109+7.
Constraints
- 1≤N≤103
Input
The input is given from Standard Input in the following format:
N
Output
Print the number of the positive divisors of N!, modulo 109+7.
Example
Sample Input 1
3
Sample Output 1
4
There are four divisors of 3! =6: 1, 2, 3 and 6. Thus, the output should be 4.
Sample Input 2
6
Sample Output 2
30
Sample Input 3
1000
Sample Output 3
972926972
題意:給出一個整數 n,求 n! 的約數個數
思路:
根據唯一分解定理,一個整數 n 可分解為:
那么,n 的約數個數為:
故而對于每個素因子,可以選擇 0~ai 個,根據乘法原理,直接統計即可
Source Program
#include<iostream> #include<cstdio> #include<cstdlib> #include<string> #include<cstring> #include<cmath> #include<ctime> #include<algorithm> #include<utility> #include<stack> #include<queue> #include<vector> #include<set> #include<map> #define EPS 1e-9 #define PI acos(-1.0) #define INF 0x3f3f3f3f #define LL long long const int MOD = 1E9+7; const int N = 1000+5; const int dx[] = {0,0,-1,1,-1,-1,1,1}; const int dy[] = {-1,1,0,0,-1,1,-1,1}; using namespace std; int num[N]; int main() {int n;scanf("%d",&n);for(int i=2;i<=n;i++){int temp=i;for(int j=2;j<=temp;j++){while(temp%j==0){num[j]++;temp/=j;}}if(temp!=1)num[temp]++;}LL res=1;for(int i=1; i<=n; i++)if(num[i])res=(res*(num[i]+1))%MOD;printf("%lld\n",res);return 0; }?
總結
以上是生活随笔為你收集整理的Factors of Factorial(AtCoder-2286)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 骨牌覆盖(51Nod-1031)
- 下一篇: 图论 —— 网络流 —— 最小割 ——