Xor Sum(AtCoder-2272)
Problem Description
You are given a positive integer N. Find the number of the pairs of integers u and v (0≦u,v≦N) such that there exist two non-negative integers a and b satisfying a xor b=u and a+b=v. Here, xor denotes the bitwise exclusive OR. Since it can be extremely large, compute the answer modulo 109+7.
Constraints
- 1≦N≦10^18
Input
The input is given from Standard Input in the following format:
N
Output
Print the number of the possible pairs of integers u and v, modulo 109+7.
Example
Sample Input 1
3
Sample Output 1
5
The five possible pairs of u and v are:
u=0,v=0 (Let a=0,b=0, then 0 xor 0=0, 0+0=0.)
u=0,v=2 (Let a=1,b=1, then 1 xor 1=0, 1+1=2.)
u=1,v=1 (Let a=1,b=0, then 1 xor 0=1, 1+0=1.)
u=2,v=2 (Let a=2,b=0, then 2 xor 0=2, 2+0=2.)
u=3,v=3 (Let a=3,b=0, then 3 xor 0=3, 3+0=3.)
Sample Input 2
1422
Sample Output 2
52277
Sample Input 3
1000000000000000000
Sample Output 3
787014179
題意:給出一個(gè)整數(shù) n,已知 0<=u,v<=n,求滿足 a xor b=u 且 a+b=v 的 a、b 對(duì)數(shù)
思路:
首先打表,可以發(fā)現(xiàn)前幾項(xiàng)有:1、2、4、5、8、10、13、14、18、21、26、28、33、36、40、41、46、50、57、60、68
可以發(fā)現(xiàn):
因此直接用數(shù)組記錄前面已有的項(xiàng)目,再開一個(gè) map 用于記憶化搜索,然后遞歸即可
Source Program
#include<iostream> #include<cstdio> #include<cstdlib> #include<string> #include<cstring> #include<cmath> #include<ctime> #include<algorithm> #include<utility> #include<stack> #include<queue> #include<vector> #include<set> #include<map> #define EPS 1e-9 #define PI acos(-1.0) #define INF 0x3f3f3f3f #define LL long long const int MOD = 1E9+7; const int N = 1000000+5; const int dx[] = {0,0,-1,1,-1,-1,1,1}; const int dy[] = {-1,1,0,0,-1,1,-1,1}; using namespace std;LL a[25]={1,2,4,5,8,10,13,14,18,21,26,28,33,36,40,41,46,50,57,60,68}; map<LL,LL> mp; LL cal(LL x) {if(x<=20)return a[x];if(mp[x])return mp[x];if(x%2)return mp[x]=(2*cal(x/2)%MOD+cal(x/2-1)%MOD)%MOD;elsereturn mp[x]=(2*cal(x/2-1)%MOD+cal(x/2)%MOD)%MOD; } int main() {LL n;scanf("%lld",&n);printf("%lld\n",cal(n));return 0; }?
總結(jié)
以上是生活随笔為你收集整理的Xor Sum(AtCoder-2272)的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: So Easy!(HDU - 4565)
- 下一篇: Lucky Number(HDU-493