3atv精品不卡视频,97人人超碰国产精品最新,中文字幕av一区二区三区人妻少妇,久久久精品波多野结衣,日韩一区二区三区精品

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

美国数学月刊问题18-10-31

發布時間:2025/3/16 编程问答 14 豆豆
生活随笔 收集整理的這篇文章主要介紹了 美国数学月刊问题18-10-31 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

Problem 12067 - 08 - P. Bracken (USA).

對于正整數$n$.令$$\beta_n=6n+12n^2(\gamma-\gamma_n),$$
其中$\gamma_n=H_n-\ln n$, $\displaystyle H_n=\sum_{j=1}^n\frac{1}{j}$為第$n$個調和數(Harmonic number),且$\gamma$為Euler常數.證明:對所有$n$,均有$\beta_{n+1}>\beta_n$.

Problem 12066 - 08 - Xiang-Qian Chang (USA).
設$n$和$k$是大于$1$的正整數, $A$是$n\times n$正定Hermite矩陣.證明
$$\left( \det A \right) ^{1/n}\le \left( \frac{\mathrm{tr}^k\left( A \right) -\mathrm{tr}\left( A^k \right)}{n^k-n} \right) ^{1/k}.$$
Problem 12064 - 08 - C. A. Hernandez Melo (Brazil).
設$f$為凸的,從$[1,\infty)$到$\mathbb{R}$的連續可微函數,使得對所有$x\geq 1$,均有$f'(x)>0$.證明反常積分$$\int_1^\infty\frac{dx}{f'(x)}$$收斂當且僅當級數$$\sum_{n=1}^\infty\left(f^{-1}(f(n)+\varepsilon)-n\right)$$對所有$\varepsilon>0$均收斂.
Problem 12063 - 08 - H. Ohtsuka (Japan).
設$p$和$q$為實數,且$p>0,q>-p^2/4$.令$U_0=0,U_1=1$,而且對于$n\geq 0$,有$U_{n+2}=pU_{n+1}+qU_n$.計算
$$\lim_{n\rightarrow \infty}\sqrt{U_{1}^{2}+\sqrt{U_{2}^{2}+\sqrt{U_{4}^{2}+\sqrt{\cdots +\sqrt{U_{2^{n-1}}^{2}}}}}}.$$
Problem 12060 - 07 - O. Furdui and A. Sintamarian (Romania).
證明$$\sum_{n=2}^{\infty}{\frac{H_nH_{n+1}}{n^3-n}}=\frac{5}{2}-\frac{\pi ^2}{24}-\zeta \left( 3 \right),$$
其中$\displaystyle H_n=\sum_{j=1}^n\frac{1}{j}$為第$n$個調和數(Harmonic number).
Problem 12057 - 07 - P. Korus (Hungary).
(a)設$a_1=1,a_2=2$且對任意正整數$k$,有
$$a_{2k+1}=\frac{a_{2k-1}+a_{2k}}{2},\quad a_{2k+2}=\sqrt{a_{2k}a_{2k+1}}.$$
求數列$\{a_n\}$的極限.
(b)設$b_1=1,b_2=2$且對任意正整數$k$,有
$$b_{2k+1}=\frac{b_{2k-1}+b_{2k}}{2},\quad b_{2k+2}=\frac{2b_{2k}b_{2k+1}}{b_{2k}+b_{2k+1}}.$$
求數列$\{b_n\}$的極限.
Problem 12054 - 06 - C. I. Valean (Romania).
證明$$\int_0^1{\frac{\arctan x}{x}\ln \frac{1+x^2}{\left( 1-x \right) ^2}dx}=\frac{\pi ^3}{16}.$$
Problem 12051 - 06 - P. Ribeiro (Portugal).
證明$$
\sum_{n=0}^{\infty}{\left( \begin{array}{c}
2n\\
n\\
\end{array} \right) \frac{1}{4^n\left( 2n+1 \right) ^3}}=\frac{\pi ^3}{48}+\frac{\pi \ln ^22}{4}.
$$
Problem 12049 - 06 - Z. K. Silagadze (Russia).
對所有滿足$m\leq n$的非負整數$m$和$n$.證明
$$
\sum_{k=m}^n{\frac{\left( -1 \right) ^{k+m}}{2k+1}\left( \begin{array}{c}
n+k\\
n-k\\
\end{array} \right) \left( \begin{array}{c}
2k\\
k-m\\
\end{array} \right)}=\frac{1}{2n+1}.
$$

?

https://math.stackexchange.com/q/876106/165013

prove that this integral

$$\int_{0}^{\infty}\dfrac{dx}{(1+x^2)(1+r^2x^2)(1+r^4x^2)(1+r^6x^2)\cdots}=
\dfrac{\pi}{2(1+r+r^3+r^6+r^{10}+\cdots}$$

for this integral,I can't find it.and I don't know how deal this such strange integral.

and this problem is from china QQ (someone ask it)

before I ask this question:
https://math.stackexchange.com/questions/671964/how-find-this-integral-fy-int-infty-infty-fracdx1x21xy2?rq=1


?

If we set
$$ f(x)=\prod_{n=0}^{+\infty}(1+r^{2n}x^2) $$
we have:
$$\int_{0}^{+\infty}\frac{dx}{f(x)}=\pi i\sum_{m=0}^{+\infty}\operatorname{Res}\left(f(z),z=\frac{i}{r^m}\right)=\frac{\pi}{2}\sum_{m=0}^{+\infty}\frac{1}{r^m}\prod_{n\neq m}(1-r^{2n-2m})^{-1}\tag{1}$$
but since
$$ \prod_{n=0}^{+\infty}(1-x^n z)^{-1}=\sum_{n=0}^{+\infty}\frac{z^n}{(1-x)\cdot\ldots\cdot(1-x^n)}$$
is one of the Euler's partitions identities, and:
$$\frac{\pi}{2}\sum_{m=0}^{+\infty}\frac{1}{r^m}\prod_{n\neq m}(1-r^{2n-2m})^{-1}=\frac{\pi}{2}\prod_{n=1}^{+\infty}(1-r^{2n})^{-1}\sum_{m=0}^{+\infty}\frac{(1/r)^m}{(1-(1/r^2))\cdot\ldots\cdot(1-(1/r^2)^m)}$$
we have:
$$\int_{0}^{+\infty}\frac{dz}{f(z)}=\frac{\pi}{2}\prod_{n=1}^{+\infty}(1-r^{2n})^{-1}\prod_{m=0}^{+\infty}\left(1-\frac{1}{r^{2m+1}}\right)^{-1}\tag{2}$$
and the claim follows from the Jacobi triple product identity:
$$\sum_{k=-\infty}^{+\infty}s^k q^{\binom{k+1}{2}}=\prod_{m\geq 1}(1-q^m)(1+s q^m)(1+s^{-1}q^{m-1}).$$


?

Find this integral
$$F(y)=\int_{-\infty}^{\infty}\dfrac{dx}{(1+x^2)(1+(x+y)^2)}$$


?

How about using the residue theorem? We have
$$F(y)= 2\pi i \sum_{x^*} \mathop{\rm Res}_{x=x^*} f(x),$$
where the sum ranges over all the poles of the integrand $$f(x)= \frac1{(1+x^2)[1+(x+y)^2]}$$ in the upper half-plane. These poles are situated at $x^*= i, i-y$ (assuming $y$ to be real).

As the poles are simple poles, we obtain the residues by
$$ \mathop{\rm Res}_{x=x^*} f(x) =\lim_{x\to x^*} (x-x^*)f(x) .$$
Thus, we have
$$ \mathop{\rm Res}_{x=i} f(x) = \frac{1}{2 i [1+(i + y)^2]}$$
and
$$ \mathop{\rm Res}_{x=i-y} f(x) = \frac{1}{2 i [1+(i-y)^2]}.$$

So, we obtain
$$ F(y) = \pi \left[\frac{1}{1+(i + y)^2} +
\frac{1}{1+(i-y)^2} \right] = \frac{2 \pi}{4+y^2}$$
as the final result.


?


?

?

http://www.artofproblemsolving.com/Forum/viewtopic.php?t=114058

Fejer三角多項式不等式


?

https://math.stackexchange.com/q/2122045/165013

In a letter to Hardy, Ramanujan described a simple identity valid for $0<a<b+\frac 12$:

> $$\small\int\limits_{0}^{\infty}\frac {1+\dfrac {x^2}{(b+1)^2}}{1+\dfrac {x^2}{a^2}}\dfrac {1+\dfrac {x^2}{(b+2)^2}}{1+\dfrac {x^2}{(a+1)^2}}\dfrac {1+\dfrac {x^2}{(b+3)^2}}{1+\dfrac {x^2}{(a+2)^2}}\cdots \, dx=\dfrac {\sqrt{\pi}}2\dfrac {\Gamma\left(a+\frac 12\right)\Gamma\left(b+1\right)\Gamma(b-a+1)}{\Gamma(a)\Gamma\left(b+\frac 12\right)\Gamma\left(b-a+\frac 12\right)}\tag1$$

Which I find remarkable.

>**Questions:**

1. Has anyone discovered a way to prove $(1)$? If so, how do you prove it?
2. Where did Ramanujan learn all of his integrational-calculus material (It doesn't appear in the *Synopsis book*)?
3. Does anyone know a pdf or book where I can start learning advanced integration?

----------
I'm wondering how you would prove $(1)$ and if there are similar identities that can be made. Wikipedia doesn't have any information.


>**Proposition 1 :**$$\color{blue}{\displaystyle \sum\limits_{k=1}^\infty \dfrac{(-1)^{k-1}}{k}\;\zeta_H(k,a)x^k \; =\; \ln\left(\dfrac{\Gamma(a)}{\Gamma(a+x)}\right)\tag1}$$

**Proof :**

$$\begin{align*} & \displaystyle \sum\limits_{k=0}^{\infty}(-x)^{k}\zeta_H(k+1,a)\\ & \displaystyle = \sum\limits_{k,n=0}^{\infty} \dfrac{(-x)^k}{(n+a)^{k+1}}\\ & \displaystyle = \sum\limits_{n=0}^\infty \dfrac{1}{n+a}\sum\limits_{k=0}^\infty \left(\dfrac{-x}{n+a}\right)^k \\ & \displaystyle = \sum\limits_{n=0}^\infty \dfrac{1}{n+a+x} \\ & \displaystyle = -\psi(a+x)\end{align*}$$

Now integrating,

$$\displaystyle \sum\limits_{k=1}^{\infty} \dfrac{(-1)^{k-1}}{k}\zeta_H(k,a)x^k =\ln\left(\dfrac{\Gamma(a)}{\Gamma(a+x)}\right)\\ $$


>**Proposition 2 :**$$\color{blue}{\displaystyle \prod\limits_{n=0}^{\infty} \left(1+\dfrac{x^2}{(n+a)^2}\right)\;=\; \dfrac{\Gamma^2 (a)}{\Gamma(a+ix)\Gamma(a-ix)}\tag 2} $$

**Proof :**

It is sufficient to evaluate the series,

$$\begin{align*} & \displaystyle\sum\limits_{n=0}^{\infty}\ln\left(1+\dfrac{x}{n+a}\right) \\ & = \displaystyle \sum\limits_{k=1}^\infty\sum\limits_{n=0}^\infty \dfrac{(-1)^{k-1}}{k}x^k \dfrac{1}{(n+a)^k} \\ & =\displaystyle \sum\limits_{k=1}^{\infty} \dfrac{(-1)^{k-1}}{k}\zeta_H(k,a)x^k \\ & =\displaystyle \ln\left(\dfrac{\Gamma(a)}{\Gamma(a+x)}\right)\end{align*}$$

$$\displaystyle \prod\limits_{n=0}^{\infty} \left(1+\dfrac{x}{n+a}\right) = \dfrac{\Gamma(a)}{\Gamma(a+x)}$$

Therefore,

$$\displaystyle \prod\limits_{n=0}^{\infty} \left(1+\dfrac{x^2}{(n+a)^2}\right)\;=\; \dfrac{\Gamma^2 (a)}{\Gamma(a+ix)\Gamma(a-ix)}$$

>Proposition 3 : If $\; \displaystyle F(s)=\int\limits_0^\infty x^{s-1}f(x)\; dx\; $ then $$\color{blue}{\displaystyle \int\limits_{-\infty}^{\infty} |F(ix)|^2 \; dx \;= \; 2\pi\int\limits_0^\infty \dfrac{|f(x)|^2}{x}\; dx\tag 3} $$

**Proof :**

$$\displaystyle F(it)=\int\limits_0^\infty x^{it}\dfrac{f(x)}{x}\; dx$$

Set $x=e^y$ ,

$$\displaystyle F(it)=\int\limits_0^\infty e^{ixt}f(e^x)\; dx$$

Now by properties of Fourier Transform,

$$\begin{align*} & \displaystyle f(e^t)=\int\limits_{-\infty}^\infty g(x)e^{-ixt}\; dx \\ & \displaystyle g(t)=\dfrac{1}{2\pi}\int\limits_{-\infty}^\infty f(e^x)e^{ixt}\; dx\\\end{align*}$$

$$\begin{align*}\displaystyle F(it) & =2\pi g(t) \\ \displaystyle \int\limits_{-\infty}^\infty |F(it)|^2\; dt & = 4\pi^2 \int\limits_{-\infty}^\infty |g(t)|^2\; dt \\ \displaystyle \int\limits_{-\infty}^\infty |F(it)|^2\; dt & = 2\pi \int\limits_{-\infty}^\infty g(t) \int\limits_{-\infty}^\infty e^{ixt}f(e^x)\; dx\; dt \\ \displaystyle \int\limits_{-\infty}^\infty |F(it)|^2\; dt & = 2\pi \int\limits_{-\infty}^\infty f(e^x) \int\limits_{-\infty}^\infty e^{ixt}g(t)\; dt\; dx \\ \displaystyle \int\limits_{-\infty}^\infty |F(it)|^2\; dt & = 2\pi \int\limits_{-\infty}^\infty f(e^x)\overline{f(e^x)}\; dx =2\pi\int\limits_{-\infty}^\infty |f(e^x)|^2\; dx\end{align*}$$

Now by setting $e^x=t$ we get our result,

$$\displaystyle \int\limits_{-\infty}^\infty |F(it)|^2\; dt = 2\pi\int\limits_{-\infty}^\infty \dfrac{|f(t)|^2}{t}\; dt$$

>**Main Problem:** $$\color{blue}{\displaystyle \int\limits_{0}^{\infty}\frac {1+\dfrac {x^2}{(b+1)^2}}{1+\dfrac {x^2}{a^2}}\dfrac {1+\dfrac {x^2}{(b+2)^2}}{1+\dfrac {x^2}{(a+1)^2}}\dfrac {1+\dfrac {x^2}{(b+3)^2}}{1+\dfrac {x^2}{(a+2)^2}}\cdots \, dx=\dfrac {\sqrt{\pi}}2\dfrac {\Gamma\left(a+\frac 12\right)\Gamma\left(b+1\right)\Gamma(b-a+1)}{\Gamma(a)\Gamma\left(b+\frac 12\right)\Gamma\left(b-a+\frac 12\right)}} $$

**Proof :** If we denote the integral by $I$ then using $(2)$ it can be rewritten as,

$$\displaystyle I = \dfrac{\Gamma^2 (b+1)}{\Gamma^2 (a)}\dfrac{1}{2} \int\limits_{-\infty}^\infty \dfrac{|\Gamma(a+ix)|^2}{|\Gamma(b+1+ix)|^2}\; dx$$

Now by defining $\displaystyle h(x)=\dfrac{x^a (1-x)^{b-a}}{\Gamma(b-a+1)}$ for $x\in[0,1]$ and $0$ for $\forall x\notin[0,1]$ (Just like done in the link in the comment) we can conclude that $\displaystyle F(s)=M[h(x)]=\dfrac{\Gamma(s+a)}{\Gamma(s+b+1)}$ and from $(3)$ it follows that,

$$\displaystyle I = \dfrac{\Gamma^2 (b+1)}{\Gamma^2 (a)}\dfrac{1}{2} \int\limits_{0}^1 \dfrac{|h(x)|^2}{x}\; dx = \dfrac {\sqrt{\pi}}2\dfrac {\Gamma\left(a+\frac 12\right)\Gamma\left(b+1\right)\Gamma(b-a+1)}{\Gamma(a)\Gamma\left(b+\frac 12\right)\Gamma\left(b-a+\frac 12\right)}$$

where last line follows from the Duplication formula , and we are done !

$$\large \color{red}{\color{blue}{\boxed{\mathfrak{PROVED}}}} $$


https://mathoverflow.net/questions/66812/ramanujans-eccentric-integral-formula

The wikipedia page on [Srinivasa Ramanujan][1] gives a very strange formula:

> **Ramanujan:** If $0 < a < b + \frac{1}{2}$ then, $$\int\limits_{0}^{\infty} \frac{ 1 + x^{2}/(b+1)^{2}}{ 1 + x^{2}/a^{2}} \times \frac{ 1 + x^{2}/(b+2)^{2}}{ 1 + x^{2}/(a+1)^{2}} \times \cdots \ \textrm{dx} = \frac{\sqrt{\pi}}{2} \small{\frac{ \Gamma(a+\frac{1}{2}) \cdot \Gamma(b+1)\: \Gamma(b-a+\frac{1}{2})}{\Gamma(a) \cdot \Gamma(b+\frac{1}{2}) \cdot \Gamma(b-a+1)}}$$

- Question I would like to pose to this community is: What could be the Intuition behind discovering this formula.


- Next, I see that Ramanujan has discovered a lot of formulas for expressing $\pi$ as series. May I know what is the advantage of having a same number expressed as a series in a different way. Is it useful at all?

- From what I know Ramanujan basically worked on *Infinite series, Continued fractions,* $\cdots$ etc. I have never seen applications of *continued fractions*, in the real world. I would also like to know if continued fractions has any applications.

Hope I haven't asked too many questions. As I was posting this question the last question on *application of continued fractions* popped up and I thought it would be a good idea to pose it here, instead of posing it as a new question.


[1]: http://en.wikipedia.org/wiki/Srinivasa_Ramanujan


?

This is one of those precious cases when Ramanujan himself provided (a sketch of) a proof. The identity was published in his paper ["Some definite integrals"][1] (*Mess. Math.* 44 (1915), pp. 10-18) together with several related formulae.

It might be instructive to look first at the simpler identity (i.e. the limiting case when $b\to\infty$; the identity mentioned in the original question can be obtained by a similar approach):
$$\int\limits_{0}^{\infty} \prod_{k=0}^{\infty}\frac{1}{ 1 + x^{2}/(a+k)^{2}}dx = \frac{\sqrt{\pi}}{2} \frac{ \Gamma(a+\frac{1}{2})}{\Gamma(a)},\quad a>0.\qquad\qquad\qquad(1)$$
Ramanujan derives (1) by using a partial fraction decomposition of the product $\prod_{k=0}^{n}\frac{1}{ 1 + x^{2}/(a+k)^{2}}$, integrating term-wise, and passing to the limit $n\to\infty$. He also indicates that alternatively (1) is implied by the factorization
$$\prod_{k=0}^{\infty}\left[1+\frac{x^2}{(a+k)^2}\right] = \frac{ [\Gamma(a)]^2}{\Gamma(a+ix)\Gamma(a-ix)},$$
which follows readily from Euler's product formula for the gamma function. Thus (1) is equivalent to the formula
$$\int\limits_{0}^{\infty}\Gamma(a+ix)\Gamma(a-ix)dx=\frac{\sqrt{\pi}}{2} \Gamma(a)\Gamma\left(a+\frac{1}{2}\right).$$

------------------------------------------------------------------

There is a nice paper ["Wallis-Ramanujan-Schur-Feynman"][2] by Amdeberhan et al (*American Mathematical Monthly* 117 (2010), pp. 618-632) that discusses interesting combinatorial aspects of formula (1) and its generalizations.

?



[1]: http://www.imsc.res.in/~rao/ramanujan/CamUnivCpapers/Cpaper11/page1.htm
[2]: http://arminstraub.com/files/publications/ws.pdf


?

?

https://math.stackexchange.com/q/434933/165013

Wikipedia [informs][1] me that

$$S = \vartheta(0;i)=\sum_{n=-\infty}^\infty e^{-\pi n^2} = \frac{\sqrt[4] \pi}{\Gamma\left(\frac 3 4\right)}$$

I tried considering $f(x,n) = e^{-x n^2}$ so that its Mellin transform becomes $\mathcal{M}_x(f)=n^{-2z} \Gamma(z)$ so inverting and summing

$$\frac{1}{2}(S-1)=\sum_{n=1}^\infty f(\pi,n)=\sum_{n=1}^\infty \frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}n^{-2z} \Gamma(z)\pi^{-z}\,dz = \frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}\zeta(2z) \Gamma(z) \pi^{-z}\,dz$$

However, this last integral (whose integrand has poles at $z=0,\frac{1}{2}$ with respective residues of $-\frac 1 2$ and $\frac 1 2$) is hard to evaluate due to the behavior of the function as $\Re(z)\to \pm\infty$ which makes a classic infinite contour over the entire left/right plane impossible.

How does one go about evaluating this sum?


[1]: http://en.wikipedia.org/wiki/Theta_function#Explicit_values


This one is a direct evaluation of elliptic integrals. Jacobi's theta function $\vartheta_{3}(q)$ is defined via the equation $$\vartheta_{3}(q) = \sum_{n = -\infty}^{\infty}q^{n^{2}}\tag{1}$$ Let $0 < k < 1$ and $k' = \sqrt{1 - k^{2}}$ and we define elliptic integrals $K, K'$ via $$K(k) = \int_{0}^{\pi/2}\frac{dx}{\sqrt{1 - k^{2}\sin^{2}x}}, K = K(k), K' = K(k')\tag{2}$$ Then it is [almost a miracle][1] that we can get $k$ in terms of $K, K'$ via the variable $q = e^{-\pi K'/K}$ using equations $$k = \frac{\vartheta_{2}^{2}(q)}{\vartheta_{3}^{2}(q)}\tag{3}$$ where $\vartheta_{2}(q)$ is another theta function of Jacobi defined by $$\vartheta_{2}(q) = \sum_{n = -\infty}^{\infty}q^{(n + (1/2))^{2}}\tag{4}$$ Also the function $\vartheta_{3}(q)$ is directly related to $K$ via $$\vartheta_{3}(q) = \sqrt{\frac{2K}{\pi}}\tag{5}$$ The proofs of $(3)$ and $(5)$ are given in the linked post on my blog.

--------

The sum in the question is $\vartheta_{3}(e^{-\pi})$ so that we have $q = e^{-\pi}$. This implies that $K'/K = 1$ so that $k = k'$ and from $k^{2} + k'^{2} = 1$ we get $k^{2} = 1/2$. And then $$\vartheta_{3}(q) = \sqrt{\frac{2K}{\pi}} = \sqrt{\frac{2}{\pi}\cdot\frac{\Gamma^{2}(1/4)}{4\sqrt{\pi}}} = \frac{\Gamma(1/4)}{\pi^{3/4}\sqrt{2}}$$ Now using $\Gamma(1/4)\Gamma(3/4) = \pi/\sin(\pi/4) = \pi\sqrt{2}$ we get $$\sum_{n = -\infty}^{\infty}e^{-\pi n^{2}} = \vartheta_{3}(e^{-\pi}) = \frac{\sqrt[4]{\pi}}{\Gamma(3/4)}$$ The value of $K = K(1/\sqrt{2})$ in terms of $\Gamma(1/4)$ is evaluated in [this answer][2].


[1]: http://paramanands.blogspot.com/2010/10/the-magic-of-theta-functions.html
[2]: https://math.stackexchange.com/a/1793756/72031


https://math.stackexchange.com/questions/363004/series-involving-log-left-tanh-frac-pi-k2-right/1793756#1793756

I found an interesting series

$$\sum_{k=1}^\infty \log \left(\tanh \frac{\pi k}{2} \right)=\log(\vartheta_4(e^{-\pi}))=\log \left(\frac{\pi^{\frac{1}{4}}}{2^{\frac{1}{4}}\Gamma \left( \frac{3}{4}\right)} \right)$$

- Does anybody know how to approach this series using Jacobi Theta Function?
- Also, can any one suggest any good papers/books on Jacobi theta functions and Jacobi Elliptic functions?

Thank you very much!


?

We have $$\vartheta_{4}(q) = \prod_{n = 1}^{\infty}(1 - q^{2n})(1 - q^{2n - 1})^{2}\tag{1}$$ It is easily seen that the above product can be written as $$\prod_{n = 1}^{\infty}(1 - q^{2n})\cdot\frac{(1 - q^{n})^{2}}{(1 - q^{2n})^{2}} = \prod_{n = 1}^{\infty}\frac{(1 - q^{n})^{2}}{1 - q^{2n}} = \prod_{n = 1}^{\infty}\frac{1 - q^{n}}{1 + q^{n}}\tag{2}$$ Putting $q = e^{-\pi}$ and noting that $$\tanh(n\pi/2) = \frac{e^{n\pi/2} - e^{n\pi/2}}{e^{n\pi/2} + e^{n\pi/2}} = \frac{1 - e^{-n\pi}}{1 + e^{-n\pi}} = \frac{1 - q^{n}}{1 + q^{n}}\tag{3}$$ we have via virtue of equations $(1), (2), (3)$ $$\vartheta_{4}(e^{-\pi}) = \prod_{n = 1}^{\infty}\tanh\left(\frac{n\pi}{2}\right)$$ so that the first equality is proved.

Now to calculate the value of $\vartheta_{4}(q)$ for $q = e^{-\pi}$ note that $$\vartheta_{4}(q) = \frac{\vartheta_{4}(q)}{\vartheta_{3}(q)}\cdot \vartheta_{3}(q) = \sqrt{k'}\sqrt{\frac{2K}{\pi}}\tag{4}$$ For $q = e^{-\pi}$ we have $k = k' = 1/\sqrt{2}$ and $$K = \int_{0}^{\pi/2}\frac{dx}{\sqrt{1 - (1/2)\sin^{2}x}} = \frac{1}{4\sqrt{\pi}}\Gamma^{2}\left(\frac{1}{4}\right)\tag{5}$$ and hence $$\vartheta_{4}(e^{-\pi}) = 2^{-3/4}\pi^{-3/4}\Gamma(1/4)$$ and noting that $$\Gamma(1/4)\Gamma(3/4) = \frac{\pi}{\sin(\pi/4)} = \sqrt{2}\pi$$ we get $$\vartheta_{4}(e^{-\pi}) = \frac{\pi^{1/4}}{2^{1/4}\Gamma(3/4)}$$ so that the second equality of the question is also proved.

-------

The integral in $(5)$ is easily evaluated via the use of beta and gamma functions. Thus
\begin{align}
K &= K(1/\sqrt{2}) = \int_{0}^{\pi/2}\frac{dx}{\sqrt{1 - (1/2)\sin^{2}x}}\notag\\
&= \sqrt{2}\int_{0}^{\pi/2}\frac{dx}{\sqrt{2 - \sin^{2}x}}\notag\\
&= \sqrt{2}\int_{0}^{\pi/2}\frac{dx}{\sqrt{1 + \cos^{2}x}}\notag\\
&= \sqrt{2}\int_{0}^{1}\frac{dt}{\sqrt{1 - t^{4}}}\text{ (by putting }t = \cos x)\notag\\
&= \frac{\sqrt{2}}{4}\int_{0}^{1}x^{-3/4}(1 - x)^{-1/2}\,dx\text{ (by putting }t^{4} = x)\notag\\
&= \frac{\sqrt{2}}{4}B\left(\frac{1}{4}, \frac{1}{2}\right)\notag\\
&= \frac{\sqrt{2}}{4}\cdot\dfrac{\Gamma\left(\frac{1}{4}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{3}{4}\right)}\notag\\
&= \frac{\sqrt{2\pi}}{4}\cdot\dfrac{\Gamma\left(\frac{1}{4}\right)}{\Gamma\left(\frac{3}{4}\right)}\notag\\
&= \frac{\sqrt{2\pi}}{4}\cdot\dfrac{\Gamma^{2}\left(\frac{1}{4}\right)}{\Gamma\left(\frac{1}{4}\right)\Gamma\left(\frac{3}{4}\right)}\notag\\
&= \frac{\sqrt{2\pi}}{4}\cdot\dfrac{\Gamma^{2}\left(\frac{1}{4}\right)}{\dfrac{\pi}{\sin(\pi/4)}}\notag\\
&= \frac{1}{4\sqrt{\pi}}\Gamma^{2}\left(\frac{1}{4}\right)\notag
\end{align}

-------

**Update**: Apparently I forgot to shed some light on the second question asked by OP namely any references/books on the theory of Jacobi Elliptic and Theta functions. This I deal with now.

The theory of Elliptic functions and theta functions is a very fascinating one. My own sources of study in this field are the following books (order of the books listed is not important here):

- *A Course of Modern Analysis* by Whittaker and Watson: A definitive resource for many many topics apart from theta functions. The focus here is on using the methods of complex analysis to develop a theory of elliptic and theta functions.
- *An Elementary Treatise on Elliptic Functions* by Cayley: This book develops the theory of elliptic functions in a very elementary fashion and I learnt most of the topic from this book. The presentation is easy to follow and does not require any deep skills apart from a good knowledge of calculus.
- *Elliptic Functions* by Armitage and Eberlein: This is another good book from Cambridge University Press which I read. It uses both elementary techniques as well as complex analysis to develop the theory of elliptic functions.
- *Pi and the AGM* by Borwein and Borwein: This is a truly singular book which connects elliptic integrals with Arithmetic Geometric Mean and is an interesting but somewhat difficult read.
- *Ramanujan Notebooks Vol 3* by Berndt: Ramanujan developed his own theory of theta functions independently of Jacobi and went far ahead, but his techniques are mostly unknown and Berndt has tried to discern his methods (to some extent) and establish most of his formulas in the theory of theta functions.
- *Collected Papers of Ramanujan* : There are some papers dealing with some applications of theory of theta functions. The value of this book is to get an insight into some of the techniques Ramanujan used. In particular one must read his monumental paper "Modular Equations and Approximations to $\pi$".
- *Fundamenta Nova* by Jacobi: This is a very good book but unfortunately written in Latin. I did manage to study some parts with the help of google translate and you can give it a try if you are willing to put extra effort of translation.

All the above books combined together cover most of the elementary and some advanced topics related to elliptic and theta functions *except its link with the algebraic number theory* (mainly the link with imaginary quadratic extensions of $\mathbb{Q}$). This is perhaps the most important and deep topic which is now famous by the name of *modular forms*. Unfortunately I don't have much knowledge on this topic.

The references listed above can be found online for free (if you search enough). I have tried to extract material from these references and present a coherent theory of elliptic integrals/functions and theta functions in [my blog posts][1] (in fact I started blogging only to document whatever I had learnt about these mysterious theta functions). The blog also contains the Ramanujan's theory of theta functions and the Borwein's approach via Arithmetic Geometric Mean. The advantage of the blog posts is that they are concise and are written in a particular order such that pre-requisites for proving a result are discussed before presenting the result.

[1]: https://paramanands.blogspot.in/p/archives.html


https://math.stackexchange.com/questions/1922440/proving-left-sum-n-infty-infty-e-pi-n2-right2-1-4-sum-n

>**Prove That :**

>$$ S^2 = 1 + 4 \sum_{n=0}^{\infty} \frac{(-1)^n}{e^{(2n+1)\pi} - 1} $$

>**where** $\displaystyle S = \sum_{n=-\infty}^{\infty} e^{- \pi n^2}$

In [this answer](https://math.stackexchange.com/questions/434933/proving-sum-n-infty-infty-e-pi-n2-frac-sqrt4-pi-gamma-left) by the user [@Sangchul Lee](https://math.stackexchange.com/users/9340/sangchul-lee), the above identity is claimed. Can we prove it without calculating the two sums separately?

Any help will be appreciated.
Thanks in advance.


?

Let we set
$$ r_2(n) = \left|\{(a,b)\in\mathbb{Z}\times\mathbb{Z}: a^2+b^2=n \}\right|\tag{1}$$
as the arithmetic function that counts the number of representation as a sum of two integer squares. By Cauchy convolution we clearly have (by setting $x=e^{-\pi}$)
$$ S^2 = \sum_{n\geq 0} r_2(n)\,x^n =1+\sum_{n\geq 1}r_2(n)\,x^n\tag{2}$$
while the other series mentioned in the question is a [Lambert series][1]. By setting
$$ d_1(n) = |\{d\mid n : d\equiv 1\pmod{4}\}|,\\ d_3(n) = |\{d\mid n : d\equiv 3\pmod{4}\}|\phantom{\,}\tag{3} $$
the question boils down to proving that
$$ r_2(n) = 4\left(d_1(n)-d_3(n)\right) = 4(\chi * 1)(n) = 4\sum_{d\mid n}\chi(d) \tag{4}$$
where $\chi$ is the non-principal [Dirichlet character][2] $\!\!\pmod{4}$.<br>
By [Lagrange's identity][3], the set of numbers equal to a sum of two integer squares is a semigroup. $r_2(n)$ depends on the number of ways for writing $n$ as $z\cdot\bar{z}$, with $z=a+ib$. $\mathbb{Z}[i]$ is a Euclidean domain and so a UFD, and every integer prime $p$ splits in $\mathbb{Z}[i]$ as $z\cdot \bar{z}$ iff $p=2$ or $p\equiv 1\pmod{4}$ (that can be proved by Fermat's descent, for instance). It follows that $r_2(n)$ is a constant times a multiplicative function, given by the convolution between $\chi$ and $1$, and the previous constant is exactly the number of invertible elements in $\mathbb{Z}[i]$, namely $4$ ($1,-1,i,-i$).<br>

This is not the only way for proving the claim. Another chance is given by [Jacobi triple product][4] and differentiation. See, for instance, [Varouchas, *Démonstration élémentaire d'une Identité de Lorenz*][5].


[1]: https://en.wikipedia.org/wiki/Lambert_series
[2]: https://en.wikipedia.org/wiki/Dirichlet_character
[3]: https://en.wikipedia.org/wiki/Lagrange%27s_identity
[4]: https://en.wikipedia.org/wiki/Jacobi_triple_product
[5]: http://link.springer.com/article/10.1023/A:1009732927027


This is a standard property of theta functions. Let $\vartheta_{3}(q)$ denote one of the Jacobi theta functions defined by $$\vartheta_{3}(q) = \sum_{n = -\infty}^{\infty}q^{n^{2}}\tag{1}$$ Then it is possible to show that $$
\vartheta_{3}^{2}(q) = 1 + 4\sum_{n = 1}^{\infty}\frac{q^{n}}{1 + q^{2n}}\tag{2}$$ and the sum on right can be written as a double sum $$\sum_{n = 1}^{\infty}\frac{q^{n}}{1 + q^{2n}} = \sum_{n = 1}^{\infty}q^{n}\sum_{m = 0}^{\infty}(-1)^{m}q^{2mn}$$ and interchanging order of summation we get $$\sum_{n = 1}^{\infty}\sum_{m = 0}^{\infty}(-1)^{m}q^{(2m + 1)n} = \sum_{m = 0}^{\infty}(-1)^{m}\sum_{n = 1}^{\infty}q^{(2m + 1)n} = \sum_{m = 0}^{\infty}(-1)^{m}\frac{q^{2m + 1}}{1 - q^{2m + 1}}\tag{3}$$ and hence from $(2)$ and $(3)$ we get $$\vartheta_{3}^{2}(q) = 1 + 4\sum_{n = 0}^{\infty}(-1)^{n}\frac{q^{2n + 1}}{1 - q^{2n + 1}}\tag{4}$$ Using $(1)$ and putting $q = e^{-\pi}$ we get $$\left(\sum_{n = -\infty}^{\infty}e^{-\pi n^{2}}\right)^{2} = 1 + 4\sum_{n = 0}^{\infty}\frac{(-1)^{n}}{e^{(2n + 1)\pi} - 1}$$ So we are left with proving the fundamental identity $(2)$. This is easily proved by using the [Fourier series for elliptic function $\operatorname{dn}(u, k)$][1] given by $$\operatorname{dn}(u, k) = \frac{\pi}{2K} + \frac{2\pi}{K}\sum_{n = 1}^{\infty}\frac{q^{n}\cos (n\pi u/K)}{1 + q^{2n}}\tag{5}$$ and putting $u = 0$ and noting that $\operatorname{dn}(u, k) = 1$ and $2K/\pi = \vartheta_{3}^{2}(q)$. The identity $(4)$ i.e. $$\left(\sum_{n = -\infty}^{\infty}q^{n^{2}}\right)^{2} = 1 + 4\sum_{n = 0}^{\infty}(-1)^{n}\frac{q^{2n + 1}}{1 - q^{2n + 1}}$$ can also be [proved directly by using Jacobi's Triple Product][2].

------

The answer by Jack D'Aurizio proves the number theoretic interpretation of identity $(4)$ and thereby establishes $(4)$. Also note that Ramanujan was able to square the identity $(4)$ by direct algebraical manipulation to prove that $$\left(\sum_{n = -\infty}^{\infty}q^{n^{2}}\right)^{4} = 1 + 8\sum_{n = 1}^{\infty}\frac{nq^{n}}{(1 + (-q)^{n})}\tag{6}$$ (put $\theta = \pi/2$ in equation $(16)$ of [this post][3]). This identity also has number theoretic interpretation that $$r_{4}(n) = 8\sum_{d\mid n}d$$ if $n$ is odd and $$r_{4}(n) = 24\sum_{d \text{ odd }d\mid n}d$$ when $n$ is even where $r_{4}(n)$ is the number of ways in which a positive integer $n$ can be expressed as the sum of squares of $4$ integers (counting order as well as sign of integers). A simple corollary is that every positive integer $n$ can be expressed as a sum of four squares.


[1]: http://paramanands.blogspot.com/2011/02/elliptic-functions-fourier-series.html
[2]: https://math.stackexchange.com/a/737894/72031
[3]: http://paramanands.blogspot.com/2013/05/certain-lambert-series-identities-and-their-proof-via-trigonometry-part-1.html


?

https://math.stackexchange.com/questions/971574/prove-that-sum-k-0-infty-frac116k-left-frac120k2-151k-47512

How to prove the following identity
$$\sum_{k=0}^\infty \frac{1}{16^k} \left(\frac{120k^2 + 151k + 47}{512k^4 + 1024k^3 + 712k^2 + 194k + 15}\right) = \pi$$
I am totally clueless in this one. Would you help me, please? Any help would be appreciated. Thanks in advance.


This is the now famous Bailey–Borwein–Plouffe formula, see

http://en.wikipedia.org/wiki/Bailey%E2%80%93Borwein%E2%80%93Plouffe_formula,

http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/digits.pdf.


Here is a summary of the proof given by Bailey, Borwein, Borwein, and Plouffe in [The Quest for Pi](http://crd-legacy.lbl.gov/~dhbailey/dhbpapers/pi-quest.pdf) in only a few lines of integration.

To begin they note the following definite integrals as summations, $n=1,\ldots,7$:

$$ \int_0^{\frac{1}{\sqrt{2}}} \frac{x^{n-1}}{1-x^8} dx =
\int_0^{\frac{1}{\sqrt{2}}} \sum_{k=0}^\infty x^{n-1+8k} dx =
\frac{1}{2^{n/2}} \sum_{k=0}^\infty \frac{1}{16^k(8k+n)} $$

If the fractional factor of the summation in the Question is expanded by partial fractions:

$$ \frac{120k^2 + 151k + 47}{512k^4 + 1024k^3 + 712k^2 + 194k + 15} =
\frac{4}{8k+1} - \frac{2}{8k+4} - \frac{1}{8k+5} - \frac{1}{8k+6} $$

then the integrals above can be applied to give:

$$ \sum_{k=0}^\infty \frac{1}{16^k} \left( \frac{4}{8k+1} - \frac{2}{8k+4}
- \frac{1}{8k+5} - \frac{1}{8k+6} \right) $$

$$ = \int_0^{\frac{1}{\sqrt{2}}}\frac{4\sqrt{2} -8x^3 -4\sqrt{2}x^4 -8x^5}{1-x^8} dx
$$

At this point the authors claim a substitution of $y= x \sqrt{2}$, making:

$$ \int_0^{\frac{1}{\sqrt{2}}}\frac{4\sqrt{2} -8x^3 -4\sqrt{2}x^4 -8x^5}{1-x^8} dx =
\int_0^1 \frac{16y-16}{y^4-2y^3+4y-4} dy $$

Finally the last integral may be expanded by partial fractions to give:

$$ \int_0^1 \frac{4y}{y^2-2} dy - \int_0^1 \frac{4y-8}{y^2-2y+2} dy = \pi $$

By way of explanation the authors point out that this rigorous proof was sought only after the discovery of the apparent [integer relations](https://en.wikipedia.org/wiki/Integer_relation_algorithm) among summations and $\pi$ via the [PSLQ algorithm](http://www.ams.org/journals/mcom/1999-68-225/S0025-5718-99-00995-3/S0025-5718-99-00995-3.pdf).


?

?

https://math.stackexchange.com/a/1703019/165013

How to calculate this relation?

$$I=\int_{0}^{1}\frac{(\arctan x)^2}{1+x^{2}}\ln\left ( 1+x^{2} \right )\mathrmze8trgl8bvbqx=\frac{\pi^3}{96}\ln{2}-\frac{3\pi\zeta{(3)}}{128}-\frac{\pi^2G}{16}+\frac{\beta{(4)}}{2}$$
Where G is the Catalan's constant, and $$\beta(x)=\sum_{k=1}^{\infty}\frac{(-1)^{k-1}}{(2k-1)^{x}}$$ is the Dirichlet's beta function.
Integrate by parts $$u=(\arctan{\,x})^2\ln{(1+x^2)}$$ $$v=\arctan{\,x}$$
We have $$3I=\frac{\pi^3}{64}\ln{2-2\int_0^{1}x(\arctan{\,x})^3}\frac{dx}{1+x^2}$$

But how to calculate the latter integral?Could anybody please help by offering useful hints or solutions?Ithing very difficult to prove.


Take $\arctan\left(x\right)=u,\,\frac{dx}{1+x^{2}}=du
$. Then $$I=\int_{0}^{1}\frac{\left(\arctan\left(x\right)\right)^{2}}{1+x^{2}}\log\left(1+x^{2}\right)dx=\int_{0}^{\pi/4}u^{2}\log\left(1+\tan^{2}\left(u\right)\right)du
$$ $$=-2\int_{0}^{\pi/4}u^{2}\log\left(\cos\left(u\right)\right)du
$$ and now using the Fourier series $$\log\left(\cos\left(u\right)\right)=-\log\left(2\right)-\sum_{k\geq1}\frac{\left(-1\right)^{k}\cos\left(2ku\right)}{k},\,0\leq x<\frac{\pi}{2}
$$ we have $$I=\frac{\log\left(2\right)\pi^{3}}{96}+2\sum_{k\geq1}\frac{\left(-1\right)^{k}}{k}\int_{0}^{\pi/4}u^{2}\cos\left(2ku\right)du
$$ and the last integral is trivial to estimate $$\int_{0}^{\pi/4}u^{2}\cos\left(2ku\right)du=\frac{\pi^{2}\sin\left(\frac{\pi k}{2}\right)}{32k}-\frac{\sin\left(\frac{\pi k}{2}\right)}{4k^{3}}+\frac{\pi\cos\left(\frac{\pi k}{2}\right)}{8k^{2}}
$$ so we have $$I=\frac{\log\left(2\right)\pi^{3}}{96}+\pi^{2}\sum_{k\geq1}\frac{\left(-1\right)^{k}\sin\left(\frac{\pi k}{2}\right)}{16k^{2}}-\sum_{k\geq1}\frac{\left(-1\right)^{k}\sin\left(\frac{\pi k}{2}\right)}{2k^{4}}+\pi\sum_{k\geq1}\frac{\left(-1\right)^{k}\cos\left(\frac{\pi k}{2}\right)}{4k^{3}}
$$ and now observing that $$\cos\left(\frac{\pi k}{2}\right)=\begin{cases}
-1, & k\equiv2\,\mod\,4\\
1, & k\equiv0\,\mod\,4\\
0, & \textrm{otherwise}
\end{cases}
$$ and $$ \sin\left(\frac{\pi k}{2}\right)=\begin{cases}
-1, & k\equiv3\,\mod\,4\\
1, & k\equiv1\,\mod\,4\\
0, & \textrm{otherwise}
\end{cases}
$$ we have $$I=\frac{\log\left(2\right)\pi^{3}}{96}-\frac{\pi^{2}}{16}K+\frac{\beta\left(4\right)}{2}-\frac{3\pi\zeta\left(3\right)}{128}\approx 0.064824$$ where the last sum is obtained using the relation between [Dirichlet eta function][1] and Riemann zeta function.
[1]:http://mathworld.wolfram.com/DirichletEtaFunction.html


https://math.stackexchange.com/questions/407420/evaluating-int-11-frac-arctanx1x-ln-left-frac1x22-right?rq=1

This is a nice problem. I am trying to use nice methods to solve this integral, But I failed.

$$\int_{-1}^{1}\dfrac{\arctan{x}}{1+x}\ln{\left(\dfrac{1+x^2}{2}\right)}dx, $$

where $\arctan{x}=\tan^{-1}{x}$

mark: this integral is my favorite one. Thanks to whoever has nice methods.

I have proved the following:

$$\int_{-1}^{1}\dfrac{\arctan{x}}{1+x}\ln{\left(\dfrac{1+x^2}{2}\right)}dx=\sum_{n=1}^{\infty}\dfrac{2^{n-1}H^2_{n-1}}{nC_{2n}^{n}}=\dfrac{\pi^3}{96}$$

where $$C_{m}^{n}=\dfrac{m}{(m-n)!n!},H_{n}=1+\dfrac{1}{2}+\dfrac{1}{3}+\cdots+\dfrac{1}{n}$$

?

I also have got a few by-products
$$\int_{-1}^{1}\dfrac{\arctan{x}}{1+x}\ln{\left(\dfrac{1+x^2}{2}\right)}dx=-I_{1}-2I_{2}$$

where $$I_{1}=\int_{0}^{1}\dfrac{\ln{(1-x^2)}}{1+x^2}\ln{\left(\dfrac{1+x^2}{2}\right)}dx=\dfrac{\pi}{4}\ln^2{2}+\dfrac{\pi^3}{32}-2K\times\ln{2}$$

and
$$I_{2}=\int_{0}^{1}\dfrac{x\arctan{x}}{1+x^2}\ln{(1-x^2)}dx=-\dfrac{\pi^3}{48}-\dfrac{\pi}{8}\ln^2{2}+K\times\ln{2}$$

and same methods,I have follow integral
$$\int_{0}^{1}\dfrac{\ln{(1-x^4)}\ln{x}}{1+x^2}dx=\dfrac{\pi^3}{16}-3K\times\ln{2}$$
where $ K $ denotes Catalan's Constant.


Here is a solution that only uses complex analysis:

Let $\epsilon$ > 0 and consider the truncated integral

$$ I_{\epsilon} = \int_{-1+\epsilon}^{1} \frac{\arctan x}{x+1} \log\left( \frac{1+x^2}{2} \right) \, dx. $$

By using the formula

$$ \arctan x = \frac{1}{2i} \log \left( \frac{1 + ix}{1 - ix} \right) = \frac{1}{2i} \left\{ \log \left( \frac{1+ix}{\sqrt{2}} \right) - \log \left( \frac{1-ix}{\sqrt{2}} \right) \right\}, $$

it follows that

$$ I_{\epsilon} = \Im \int_{-1+\epsilon}^{1} \frac{1}{x+1} \log^{2} \left( \frac{1+ix}{\sqrt{2}} \right) \, dx. $$

Now let $\omega = e^{i\pi/4}$ and make the change of variable $z = \frac{1+ix}{\sqrt{2}}$ to obtain

$$ I_{\epsilon} = \Im \int_{L_{\epsilon}} \frac{\log^2 z}{z - \bar{\omega}} \, dz, $$

where $L_{\epsilon}$ is the line segment joining from $\bar{\omega}_{\epsilon} := \bar{\omega} + \frac{i\epsilon}{\sqrt{2}}$ to $\omega$. Now we tweak this contour of integration according to the following picture:

![enter image description here][1]

That is, we first draw a clockwise circular arc $\gamma_{\epsilon}$ centered at $\bar{\omega}$ joining from $\bar{\omega}_{\epsilon}$ to some points on the unit circle, and draw a counter-clockwise circular arc $\Gamma_{\epsilon}$ joining from the endpoint of $\gamma_{\epsilon}$ to $\omega$. Then

$$ I_{\epsilon} = \Im \int_{\gamma_{\epsilon}} \frac{\log^2 z}{z - \bar{\omega}} \, dz + \Im \int_{\Gamma_{\epsilon}} \frac{\log^2 z}{z - \bar{\omega}} \, dz =: J_{\epsilon} + K_{\epsilon}. $$

It is easy to check that as $\epsilon \to 0^{+}$, the central angle of $\gamma_{\epsilon}$ converges to $\pi / 4$. Since $\gamma_{\epsilon}$ winds $\bar{\omega}$ clockwise, we have

$$ \lim_{\epsilon \to 0^{+}} J_{\epsilon} = \Im \left( -\frac{i \pi}{4} \mathrm{Res}_{z=\bar{\omega}} \frac{\log^2 z}{z - \bar{\omega}} \right) = \frac{3}{2} \frac{\pi^3}{96}. $$

Also, by applying the change of variable $z = e^{i\theta}$,

$$ K_{\epsilon} = -\Re \int_{-\frac{\pi}{4}+o(1)}^{\frac{\pi}{4}} \frac{\theta^2}{1 - \bar{\omega}e^{-i\theta}} \, d\theta = \int_{-\frac{\pi}{4}+o(1)}^{\frac{\pi}{4}} \frac{\theta^2}{2} \, d\theta. $$

Thus taking $\epsilon \to 0^{+}$, we have

$$ \lim_{\epsilon \to 0^{+}} K_{\epsilon} = - \int_{0}^{\frac{\pi}{4}} \theta^2 \, d\theta = - \frac{1}{2} \frac{\pi^3}{96}. $$

Combining these results, we have

$$ \int_{-1}^{1} \frac{\arctan x}{x+1} \log \left( \frac{x^2 + 1}{2} \right) \, dx = \frac{\pi^3}{96}. $$


The same technique shows that

$$ \int_{-1}^{1} \frac{\arctan (t x)}{x+1} \log \left( \frac{1 + x^2 t^2}{1 + t^2} \right) \, dx = \frac{2}{3} \arctan^{3} t, \quad t \in \Bbb{R} .$$

[1]: http://i.stack.imgur.com/Omsqm.png


?

https://math.stackexchange.com/q/175843/165013

I'm very curious about the ways I may compute the following integral. I'd be very glad to know your approaching ways for this integral:

$$
I_{n} \equiv
\int_{-\infty}^\infty
{1-\cos\left(x\right)\cos\left(2x\right)\ldots\cos\left(nx\right) \over x^{2}}
\,{\rm d}x
$$

According to W|A, $I_1=\pi$, $I_2=2\pi$, $I_3=3\pi$, and one may be tempted to think that it's about an arithmetical progression here, but things change (unfortunately) from $I_4$ that is $\frac{9 \pi}{2}$. This problem
came to my mind when I was working on a different problem.


First note that
$$\int_{-\infty}^{\infty} \frac{1-\cos ax}{x^2} \; dx
= \left[ -\frac{1-\cos ax}{x}\right]_{-\infty}^{\infty} + a \int_{-\infty}^{\infty} \frac{\sin ax}{x} \; dx
= \pi \, |a|,$$
by the [Dirichlet integral](http://en.wikipedia.org/wiki/Dirichlet_integral). Also, by mathematical induction we can easily prove that
$$ \prod_{k=1}^{n} \cos \theta_k = \frac{1}{2^n} \sum_{\mathrm{e}\in S} \cos\left( e_1 \theta_1 + \cdots + e_n \theta_n \right),$$
where the summation runs over the set $S = \{ -1, 1\}^n$. Thus we have
$$ \begin{align*}
I_n = \int_{-\infty}^{\infty} \frac{1-\cos x \cdots \cos nx}{x^2} \; dx
&= \frac{1}{2^n} \sum_{\mathrm{e}\in S} \int_{-\infty}^{\infty} \frac{1-\cos(e_1 x + \cdots + e_n nx)}{x^2} \; dx \\
&= \frac{\pi}{2^n} \sum_{\mathrm{e}\in S} \left|e_1 + \cdots + e_n n\right|.
\end{align*}$$
For example, if $n = 3$, we have $\left|\pm 1 \pm 2 \pm 3\right| = 0, 0, 2, 2, 4, 4, 6, 6$ and hence
$$I_3 = \frac{\pi}{8}(0 + 0 + 2 + 2 + 4 + 4 + 6 + 6) = 3\pi.$$
Let the summation part as
$$ A_n = \sum_{\mathrm{e}\in S} |e_1 + \cdots + e_n n|.$$
The first 10 terms of $(A_n)$ are given by
$$ \left(A_n\right) = (2, 8, 24, 72, 196, 500, 1232, 2968, 7016, 16280, \cdots ), $$
and thus the corresponding $(I_n)$ are given by
$$ \left(I_n\right) = \left( \pi ,2 \pi ,3 \pi ,\frac{9 \pi }{2},\frac{49 \pi }{8},\frac{125 \pi }{16},\frac{77 \pi }{8},\frac{371 \pi }{32},\frac{877 \pi
}{64},\frac{2035 \pi }{128} \right).$$
So far, I was unable to find a simple formula for $(A_n)$, and I guess that it is not easy to find such one.

----------

p.s. The probability distribution of $S_n = e_1 + \cdots + e_n n$ is bell-shaped, and fits quite well with the corresponding normal distribution $X_n \sim N(0, \mathbb{V}(S_n))$. Thus it is not bad to conjecture that
$$ \frac{A_n}{2^n} = \mathbb{E}|S_n| \approx \mathbb{E}|X_n| = \sqrt{\frac{n(n+1)(2n+1)}{3\pi}},$$
and hence
$$ I_n \approx \sqrt{\frac{\pi \, n(n+1)(2n+1)}{3}}.$$
Indeed, numerical experiment shows that

![Numerical Experiment][1]

----------

I was able to prove a much weaker statement:
$$ \lim_{n\to\infty} \frac{I_n}{n^{3/2}} = \sqrt{\frac{2\pi}{3}}. $$
First, we observe that for $|x| \leq 1$ we have
$$ \log \cos x = -\frac{x^2}{2} + O\left(x^4\right).$$
Thus in particular,
$$
\sum_{k=1}^{n} \log\cos\left(\frac{kx}{n}\right)
= \sum_{k=1}^{n}\left[-\frac{k^2 x^2}{2n^2} + O\left(\frac{k^4x^4}{n^4}\right)\right]
= -\frac{nx^2}{6} + O\left(x^2 \vee nx^4\right).$$
Now let
$$ \begin{align*}\frac{1}{n^{3/2}} \int_{-\infty}^{\infty} \frac{1 - \prod_{k=1}^{n}\cos (kx)}{x^2} \; dx
&= \frac{1}{\sqrt{n}} \int_{-\infty}^{\infty} \frac{1 - \prod_{k=1}^{n}\cos \left(\frac{kx}{n}\right)}{x^2} \; dx \qquad (nx \mapsto x) \\
&= \frac{1}{\sqrt{n}} \int_{|x|\leq 1} + \frac{1}{\sqrt{n}} \int_{|x| > 1}
=: J_n + K_n.
\end{align*}$$
For $K_n$, we have
$$ \left|K_n\right| \leq \frac{1}{\sqrt{n}} \int_{1}^{\infty} \frac{2}{x^2}\;dx = O\left(\frac{1}{\sqrt{n}}\right).$$
For $J_n$, the substitution $\sqrt{n} x \mapsto y$ gives
$$ \begin{align*}
J_n
&= \frac{1}{\sqrt{n}} \int_{|x|\leq 1} \left( 1 - \exp\left( -\frac{nx^2}{6} + O\left(x^2 \vee nx^4\right) \right) \right) \; \frac{dx}{x^2} \\
&= \int_{|y|\leq\sqrt{n}} \left( 1 - \exp\left( -\frac{y^2}{6} + O\left(\frac{y^2}{n}\right) \right) \right) \; \frac{dy}{y^2} \\
&\xrightarrow[]{n\to\infty} \int_{-\infty}^{\infty} \frac{1 - e^{-y^2/6}}{y^2} \; dy \\
&= \left[-\frac{1-e^{-y^2/6}}{y}\right]_{-\infty}^{\infty} + \frac{1}{3} \int_{-\infty}^{\infty} e^{-y^2/6} \; dy
= \sqrt{\frac{2\pi}{3}}.
\end{align*}$$
This completes the proof.

[1]: http://i.stack.imgur.com/P28na.png


I thought it would be worth mentioning that $$\int_{-\infty}^{\infty} \frac{1-\prod_{k=1}^{n}\cos (a_{k}x)}{x^{2}} = \pi a_{n} \tag{1}$$ if the $a_{k}$'s are positive parameters and $a_{n} \ge \sum_{k=1}^{n-1} a_{k}. $

This integral is somewhat similar to the [Borwein integral][1].

We can show $(1)$ by integrating the function $$f(z) = \frac{1-e^{ia_{n}z}\prod_{k=1}^{n-1}\cos(a_{k}z)}{z^{2}}$$ around an indented contour that consists of the real axis and the semicircle above it.

If $a_{n} \ge \sum_{k=1}^{n-1} a_{k}$, then $$1-e^{ia_{n}z}\prod_{k=1}^{n-1}\cos(a_{k}z) = 1- e^{ia_{n}x}\prod_{k=1}^{n-1}\frac{e^{ia_{k}z}-e^{-ia_{k}z}}{2} $$ is bounded in the upper half-plane. (If you expand, all of the exponentials are of the form $e^{ibz}$, where $b\ge 0$.)

So integrating around the contour, we get $$\operatorname{PV} \int_{-\infty}^{\infty} f(x) \, dx - i \pi \operatorname{Res} [f(z), 0] = 0, $$ where $$ \begin{align}\operatorname{Res}[f(z),0] &= \lim_{z \to 0} \frac{1-e^{ia_{n}z}\prod_{k=1}^{n-1}\cos(a_{k}z)}{z} \\ &= \lim_{z \to 0} \left(-ia_{n}e^{ia_{n}z}\prod_{k=1}^{n-1}\cos(a_{k}z)+e^{ia_{n}z} \sum_{k=1}^{n-1} a_{k} \sin(a_{k}z) \prod_{\underset{j \ne k}{j =1}}^{n-1} \cos(a_{j}z)\right) \\ &= -i a_{n}. \end{align}$$

The result follows by equating the real parts on both sides of the equation.


[1]: https://en.wikipedia.org/wiki/Borwein_integral


https://math.stackexchange.com/questions/1705839/prove-int-0-infty-left-prod-k-1n-frac-sin-leftt-kx-rightt-k


$I_n(x)$ is defined as the following.

$$ I_n(x) := \int_0^{\infty } \left(\prod _{k=1}^n \frac{\sin \left(\displaystyle\frac{t}{ k^x}\right)}{\displaystyle\frac{t}{k^x}}\right) \, \mathbbze8trgl8bvbqt$$

We know

$$ I_1(1) = I_2(1) = I_3(1) = \frac{\pi}{2},$$
$$ I_4(1) = \frac{1727 \pi}{3456}, I_5(1) = \frac{20652479 \pi}{41472000},$$
$$ I_6(1) = \frac{2059268143 \pi}{4147200000}, I_7(1) = \frac{24860948333867803 \pi}{50185433088000000}, \cdots .$$

Now, prove

$$ I_n(x) = \frac{\pi}{2}$$

for $x \ge 2$.


Let's define $$\textrm{sinc}\left(x\right)=\begin{cases}
\frac{\sin\left(x\right)}{x}, & x\neq0\\
1, & x=0
\end{cases}
$$ we have the following :

>**Theorem:** Suppose that $\left\{ a_{n}\right\}
$ is a sequence of positive numbers. Let $s_{n}=\sum_{k=1}^{n}a_{k}
$ and $$\tau_{n}=\int_{0}^{\infty}\prod_{k=0}^{n}\textrm{sinc}\left(a_{k}t\right)dt
$$ then $$0<\tau_{n}\leq\frac{\pi}{a_{0}n}
$$ and the equality holds if $n=0
$ or $a_{0}\geq s_{n}
$ when $n\geq1$.

(See [here][1] for the proof) So if we define $$a_{k}=\frac{1}{\left(k+1\right)^{x}}$$ with $x\geq2$ we note that $$a_{0}=1\geq\sum_{k=1}^{\infty}\frac{1}{\left(k+1\right)^{x}}=\zeta\left(x\right)-1$$ and so we have $$I_{n}(x)=\int_{0}^{\infty}\prod_{k=1}^{n}\frac{\sin\left(t/k{}^{x}\right)}{t/k^{x}}dt=\int_{0}^{\infty}\prod_{k=0}^{n}\frac{\sin\left(t/\left(k+1\right)^{x}\right)}{t/\left(k+1\right)^{x}}dt=\frac{\pi}{2}.
$$ **Note:** I think your product must start from $1$ since $$\frac{\sin\left(a/x\right)}{a/x}\overset{x\rightarrow0}{\rightarrow}0
$$ and so all product becomes $0$.
[1]:http://www.thebigquestions.com/borweinintegrals.pdf


?

https://math.stackexchange.com/questions/11246/how-to-prove-that-tan3-pi-11-4-sin2-pi-11-sqrt11?rq=1

How can we prove the following trigonometric identity?

$$\displaystyle \tan(3\pi/11) + 4\sin(2\pi/11) =\sqrt{11}$$


?

This is a famous problem!

A proof, which I got from just googling, appears as a solution Problem 218 in the College Mathematics Journal.

Snapshot:

![alt text][1]


[1]: http://i.stack.imgur.com/PYq30.png

You should be able to find a couple of different proofs more and references here: http://arxiv.org/PS_cache/arxiv/pdf/0709/0709.3755v1.pdf

?


Another way to solve it using the following theorem found [here][1] (author B.Sury):

> Let $p$ be an odd prime, $p\equiv -1 \pmod 4$ and let $Q$ be the set of squares in $\mathbb{Z}_p^*$. Then, $$\sum_{a\in Q}\sin\left(\frac{2a\pi}{p}\right)=\frac{\sqrt{p}}{2}$$

[1]: http://www.isibang.ac.in/~sury/luckyoct10.pdf

You may also need to use $2\sin(x)\cos(y)=\sin(x+y)+\sin(x-y)$.


Since $\tan\frac{3\pi}{11}+4\sin\frac{2\pi}{11}>0$, it's enough to prove that
$$\left(\sin\frac{3\pi}{11}+4\sin\frac{2\pi}{11}\cos\frac{3\pi}{11}\right)^2=11\cos^2\frac{3\pi}{11}$$ or
$$\left(\sin\frac{3\pi}{11}+2\sin\frac{5\pi}{11}-2\sin\frac{\pi}{11}\right)^2=11\cos^2\frac{3\pi}{11}$$ or
$$1-\cos\frac{6\pi}{11}+4-4\cos\frac{10\pi}{11}+4-4\cos\frac{2\pi}{11}+4\cos\frac{2\pi}{11}-4\cos\frac{8\pi}{11}-$$
$$-4\cos\frac{2\pi}{11}+4\cos\frac{4\pi}{11}-8\cos\frac{4\pi}{11}+8\cos\frac{6\pi}{11}=11+11\cos\frac{6\pi}{11}$$ or
$$\sum_{k=1}^5\cos\frac{2k\pi}{11}=-\frac{1}{2}$$ or
$$\sum_{k=1}^52\sin\frac{\pi}{11}\cos\frac{2k\pi}{11}=-\sin\frac{\pi}{11}$$ or
$$\sum_{k=1}^5\left(\sin\frac{(2k+1)\pi}{11}-\sin\frac{(2k-1)\pi}{11}\right)=-\sin\frac{\pi}{11}$$ or
$$\sin\frac{11\pi}{11}-\sin\frac{\pi}{11}=-\sin\frac{\pi}{11}.$$
Done!

?


Similar to the proof from the College Mathematics Journal, but structured slightly differently.

Let $\omega=e^{i\pi /11}$. Then we get $\sin\dfrac{k\pi}{11}=\dfrac{\omega^{2k}-1}{2i\omega^k}$ and $\tan\dfrac{k\pi}{11}=\dfrac{\omega^{2k}-1}{i(\omega^{2k}+1)}$

Substitution followed by some algebraic manipulations should lead to $\displaystyle\sum_{i=0}^{10}\omega^{2i}=0$, which is certainly true.


A slightly more general one is
$$ (\tan 3x+4\sin 2x)^{2}= 11-\frac{\cos 8x(\tan 8x+\tan 3x)}{\sin x\cos 3x}.$$ The proof is similar, see e.g. on Mathlinks [here][1] or the attached file [on the bottom of this post][2].


[1]: http://www.artofproblemsolving.com/Forum/viewtopic.php?p=494824#p494824
[2]: http://www.artofproblemsolving.com/Forum/viewtopic.php?p=90737#p90737


https://math.stackexchange.com/questions/578286/how-prove-this-tan-frac2-pi134-sin-frac6-pi13-sqrt132-sqrt13

**Nice Question:**

show that: The follow nice trigonometry
>$$\tan{\dfrac{2\pi}{13}}+4\sin{\dfrac{6\pi}{13}}=\sqrt{13+2\sqrt{13}}$$

This problem I have ugly solution, maybe someone have nice methods? Thank you

My ugly solution:
>let $$A=\tan{\dfrac{2\pi}{13}}+4\sin{\dfrac{6\pi}{13}},B=\tan{\dfrac{4\pi}{13}}+4\sin{\dfrac{\pi}{13}}$$
since
$$\tan{w}=2[\sin{(2w)}-\sin{(4w)}+\sin{(6w)}-\sin{(8w)}+\cdots\pm \sin{(n-1)w}]$$
where $n$ is odd,and $w=\dfrac{2k\pi}{n}$

so
>$$\tan{\dfrac{2\pi}{13}}=2\left(\sin{\dfrac{4\pi}{13}}-\sin{\dfrac{5\pi}{13}}+\sin{\dfrac{\pi}{13}}+\sin{\dfrac{3\pi}{13}}-\sin{\dfrac{6\pi}{13}}+\sin{\dfrac{2\pi}{13}}\right)$$
$$\tan{\dfrac{4\pi}{13}}=2\left(\sin{\dfrac{5\pi}{13}}-\sin{\dfrac{3\pi}{13}}-\sin{\dfrac{2\pi}{13}}-\sin{\dfrac{6\pi}{13}}-\sin{\dfrac{\pi}{13}}+\sin{\dfrac{4\pi}{13}}\right)$$
then
$$A^2-B^2=(A+B)(A-B)=16\left(\sin{\dfrac{\pi}{13}}+\sin{\dfrac{3\pi}{13}}+\sin{\dfrac{4\pi}{13}}\right)\left(\sin{\dfrac{2\pi}{13}}-\sin{\dfrac{5\pi}{13}}+\sin{\dfrac{6\pi}{13}}\right)=\cdots=4\sqrt{13}$$
$$AB=\cdots=6\left(\cos{\dfrac{\pi}{13}}+\cos{\dfrac{2\pi}{13}}+\cos{\dfrac{3\pi}{13}}-\cos{\dfrac{4\pi}{13}}-\cos{\dfrac{5\pi}{13}}+\cos{\dfrac{6\pi}{13}}\right)=\cdots=3\sqrt{3}$$
so
$$A=\sqrt{13+2\sqrt{13}},B=\sqrt{13-2\sqrt{13}}$$

Have other nice metods?

and I know this is simlar 1982 AMM problem: https://math.stackexchange.com/questions/11246/how-to-prove-that-tan3-pi-11-4-sin2-pi-11-sqrt11

But My problem is hard then AMM problem。Thank you very much!


Here's an approach using some number theory. I'm no cleaner than yours, but it does apply standard techniques that might be good to know (and pretty much always work, even when there's no short solution).

Let $\zeta = \exp\bigl(\frac{2\pi i}{13}\bigr)$. Then $\zeta$ solves the 12th-order equation $p(\zeta) = \zeta^{12} + \zeta^{11} + \dots + \zeta + 1 = 0$, and no polynomial with rational coefficients of lower degree. Note that $\tan \frac{2\pi}{13} = -i\frac{\zeta - \zeta^{-1}}{\zeta + \zeta^{-1}}$, and $\sin \frac{6\pi}{13} = -i \frac{\zeta^3 - \zeta^{-3}}{2}$. Thus the problem is equivalent to showing that

$$ \xi = \frac{\zeta - \zeta^{-1}}{\zeta + \zeta^{-1}} + 2 (\zeta^3 - \zeta^{-3}) $$

solves the equation $ \xi^2 = -13 - 2\sqrt{13} $.
Note that this is almost equivalent to the equation
$$(\xi^2 + 13)^2 = 52$$
The difference is the choice of $\pm \sqrt{13}$ above, which can in principal be fixed with some estimations.

This latter equation must follow purely from the algebraic equation $p(\zeta) = 0$; in particular, it must hold for all other roots of $p$. This suggests that the ideas of Galois theory could help.

So, let's take some time to document the Galois theory of the algebraic integer $\zeta$, and of the field $\mathbb Q[\zeta]$. We begin by calculating its Galois group. The roots of $p$ are $\zeta,\zeta^2,\dots,\zeta^{12}$; and so the Galois group $G = \mathrm{Aut}(\mathbb Q[\zeta])$ has order $12$. Each element $f\in G$ is of the form $f_m : \zeta \mapsto \zeta^m$; noting that $f_m f_n (\zeta) = f_m( \zeta^n) = (\zeta^m)^n = \zeta^{mn}$, we see that the Galois group is abelian. Noting that $3^3 \equiv 1 \pmod {13}$, we see that $f_3$ is an automorphism of order $3$. Finally, $2^4 \equiv 3 \pmod{13}$, so $(f_2)^4 = f_3$, from which it follows that $f_2$ is an element in $G$ of order $12$. In particular, $G \cong \mathbb Z/(12)$ is cyclic, generated by (for example) $f_2$.

This means the following. An element of $\mathbb Q[\zeta]$ — i.e. a polynomial in $\zeta$ — is rational iff it it invariant under $f_2$. Every element of $\mathbb Q[\zeta]$ solves a 12th-order polynomial. Since $f_3$ and its inverse $(f_3)^{-1} = (f_3)^2 = f_9$ are the only elements of $G$ of order $3$, an element of $\mathbb Q[\zeta]$ solves a 4th-order polynomial iff it is invariant under $f_3$. Note that $f_4$ generates the subgroup of order $6$, which has index $2$ in $\mathbb Z / 6$; therefore an element solves a quadratic equation iff it is invariant under $f_4$. And so on: the subgroup of order $2$ is generated by $f_{12} : \zeta \mapsto \zeta^{12} = \zeta^{-1}$, and so elements invariant under $f_{12}$, like $\zeta + \zeta^{-1}$, solve 6th-degree polynomials.

Returning to the $\xi$ at hand, let's suppose we don't know what polynomial it's supposed to solve, and try to find it. Before continuing, let's factor a copy of $1 + z^2$ out of $p(z) - 1$, to clear denominators in $\xi$:

$$ p(z) - 1 = (z+z^{-1})(z^2 + z^3 + z^6 + z^7 + z^{10} + z^{11}) $$
$$ \frac1{\zeta + \zeta^{-1}} = -\zeta^2 - \zeta^3 - \zeta^6 - \zeta^{-6} - \zeta^{-3} - \zeta^{-2} $$
$$ \xi = \zeta^1 + \zeta^2 - \zeta^3 - \zeta^4 + \zeta^5 + \zeta^6 - \zeta^{-6} - \zeta^{-5} + \zeta^{-4} + \zeta^{-3} - \zeta^{-2} - \zeta^{-1} + 2(\zeta^3 - \zeta^{-3}) = \zeta^1 + \zeta^2 + \zeta^3 - \zeta^4 + \zeta^5 + \zeta^6 - \zeta^{-6} - \zeta^{-5} + \zeta^{-4} - \zeta^{-3} - \zeta^{-2} - \zeta^{-1}$$

Note that the orbits under $f_3$ are $\{\zeta,\zeta^3,\zeta^4\}$, $\{\zeta^2, \zeta^6,\zeta^{18} = \zeta^5\}$, and two more formed from these by $\zeta \mapsto \zeta^{-1}$. Inspection then shows that $\xi$ is in fact invariant under $f_3$, hence solves a 4th-order equation. The four roots are necessarily given by $\xi, f_2(\xi), f_4(\xi), f_8(\xi)$. Thus the equation is $(z-\xi)(z-f_2\xi)(z - f_4\xi)(z - f_8\xi)$.

Rather than multiplying this out, let's note that $f_4(\xi) = -\xi$, and $f_8(\xi) = -f_2(\xi)$. This is because $\xi$ transforms by a factor of $-1$ under the action of $f_{12} = (f_4)^3$. (Put another way, $\xi$ is pure imaginary.) Thus we're looking for the polynomial

$$ q(z) = \bigl(z^2 - \xi^2\bigr)\bigr(z^2 - f_2(\xi)^2\bigr) $$

since it will the minimal polynomial with rational coefficients solved by $\xi$.

Let us write $\alpha = \zeta + \zeta^3 + \zeta^9$, so that $\xi = \alpha + f_2(\alpha) - f_4(\alpha) - f_8(\alpha)$, and $f_2(\xi) = - \alpha + f_2(\alpha) + f_4(\alpha) - f_8(\alpha)$. Note also that the defining equation is $\alpha + f_2(\alpha) + f_4(\alpha) + f_8(\alpha) + 1 = 0$. We are reduced to calculating two numbers: $b = \xi^2 + f_2(\xi)^2$ and $c = \xi^2f_2(\xi)^2$; then $q(z) = z^4 - bz^2 + c$. We note that

$$ \alpha^2 = f_2(\alpha) + 2\zeta^4 + 2\zeta^{10} + 2\zeta^{12} = f_2(\alpha) + 2f_4(\alpha) $$
$$ \alpha \ f_4(\alpha) = (\zeta + \zeta^3 + \zeta^{-4})(\zeta^4 + \zeta^{-1} + \zeta^{-3}) = 3 + \zeta^5 + \zeta^{-2} + \zeta^{-6} + \zeta^2 + \zeta^{-5} + \zeta^6 = 3 + f_2(\alpha) + f_8(\alpha) $$

Writing $\beta = \alpha - f_4(\alpha)$, we have:
$$ \xi = \beta + f_2(\beta), \quad f_2(\xi) = -\beta + f_2(\beta) $$
$$ b = \xi^2 + f_2(\xi)^2 = 2 (\beta^2 + f_2(\beta)^2) $$
$$ c = \bigl(\xi f_2(\xi)\bigr)^2 = \bigl(\beta^2 - f_2(\beta)^2\bigr)^2 $$

$$ \beta^2 = \alpha^2 + f_4(\alpha)^2 - 2\alpha \ f_4(\alpha) = f_2(\alpha) + 2f_4(\alpha) + f_8(\alpha) + 2 \alpha - 2(3 + f_2(\alpha) + f_8(\alpha)) = -6 + 2\alpha - f_2(\alpha) + 2f_4(\alpha) - f_8(\alpha)$$
$$ \beta^2 + f_2(\beta)^2 = -12 + (\alpha + f_2\alpha + f_4\alpha + f_8\alpha) = -13 $$
$$ \beta^2 - f_2(\beta)^2 = 3\alpha - 3f_2(\alpha) + 3f_4(\alpha) - 3f_8(\alpha) = 3(\alpha + f_4(\alpha) - f_2(\alpha) - f_8(\alpha)) $$

Therefore $b = -26$. Let $\gamma = \alpha + f_4\alpha$, so that $\gamma + f_2(\gamma) = -1$, and
$$ \gamma \ f_2(\gamma) = (\zeta + \zeta^3 + \zeta^4 + \zeta^{-4} + \zeta^{-3} + \zeta^{-2})(\zeta^2 + \zeta^5 + \zeta^6 + \zeta^{-6} + \zeta^{-5} + \zeta^{-2}) =
\zeta + \zeta^2 + \zeta^3 + \zeta^5 + 2\zeta^6 + \zeta^{-6} + 2\zeta^{-5} + 3\zeta^{-4}
+ 2\zeta^{-3} + 2\zeta^{-2} + 2\zeta^{-1} + (\zeta \leftrightarrow \zeta^{-1}) = 3(\zeta + \dots + \zeta^{-1}) = -3$$

The last thing to calculate is:
$$ c = 9(\gamma - f_2(\gamma))^2 = 9\bigl((\gamma + f_2\gamma)^2 - 4\gamma \ f_2\gamma\bigr) = 9\bigl( 1 - 4(-3)\bigr) = 9\times 13$$

Thus $q(z) = z^4 + 26 z^2 + 9\times 13 = (z^2 + 13)^2 - 4\times 13$, completing the proof.


The following argument is more or less a duplicate in this [paper](https://math.stackexchange.com/questions/11246/how-to-prove-that-tan3-pi-11-4-sin2-pi-11-sqrt11?rq=1):

Let $x=e^{2\pi i/13}$. Then $$i\tan{2\pi/13}=\frac{x^2-1}{x^2+1}=\frac{x^2-x^{26}}{x^2+1}$$

(recall that $x^{13}=1$)

$$=x^2(1-x^2)(1+x^4+x^8+x^{12}+x^3+x^7)$$
$$=(x+x^2+x^5+x^6+x^9+x^{10}-x^3-x^4-x^7-x^8-x^{11}-x^{12})$$

$$4i\sin{6\pi/13}=2(x^3-x^{10})$$

So $i\tan{2\pi/13}+4i\sin{6\pi/13}=(x+x^2+x^3+x^5+x^6+x^9-x^4-x^7-x^8-x^{10}-x^{11}-x^{12})$

Recall that $1+x+x^2+\cdots+x^{12}=0$.

After some tedious computation, we arrive at

$$(x+x^2+x^3+x^5+x^6+x^9)(x^4+x^7+x^8+x^{10}+x^{11}+x^{12})$$

$$=4+x+x^3+x^4+x^9+x^{10}+x^{12}$$

The key step in the deduction is the [famous exponential sum of Gauss](http://en.wikipedia.org/wiki/Quadratic_Gauss_sum), which gives,

$$1+2(x+x^4+x^9+x^3+x^{12}+x^{10})=\sqrt{13}.$$

Hence $$(x+x^2+x^3+x^5+x^6+x^9)(x^4+x^7+x^8+x^{10}+x^{11}+x^{12})=(7+\sqrt{13})/2$$

Recall our formula $1+x+x^2+\cdots+x^{12}=0$ again, and

$$(x+x^2+x^3+x^5+x^6+x^9-x^4-x^7-x^8-x^{10}-x^{11}-x^{12})^2=(-1)^2-4\times(7+\sqrt{13})/2$$
$$=-13-2\sqrt{13}$$

Hence $i\tan{2\pi/13}+4i\sin{6\pi/13}=\pm i\sqrt{13+2\sqrt{13}}$

and it is obvious that $\tan{2\pi/13}+4\sin{6\pi/13}=\sqrt{13+2\sqrt{13}}$, Q.E.D.

**P.S.** I have a strong feeling that a generalization of such an identity to all primes is possible, but I cannot work them out right now.


?

?https://math.stackexchange.com/questions/411571/how-prove-this-left-frac-sin-sqrt-lambda-cdot-tau-sqrt-lambda-righ

let $\lambda $ is a any complex numbers,and $\tau\in[0,1]$

show that
$$\left|\dfrac{\sin{(\sqrt{\lambda}\cdot\tau)}}{\sqrt{\lambda}}\right|\le e^{|\mathrm{Im}\sqrt{\lambda}|\cdot\tau}$$

my idea:
$$\left|\dfrac{\sin{(\sqrt{\lambda}\cdot\tau)}}{\sqrt{\lambda}}\right|\le \int_{0}^{\tau}|\cos{(\sqrt{\lambda}\cdot s)}|ds$$

follow I can't solve it,Thank you


?

https://math.stackexchange.com/questions/523297/how-to-prove-this-inequality-bigx-sin-frac1x-y-sin-frac1y-big2

For any real numbers $x,y\neq 0$,show that
$$\Big|x\sin{\dfrac{1}{x}}-y\sin{\dfrac{1}{y}}\Big|<2\sqrt{|x-y|}$$
I found this problem when I dealt with [this problem][1]. But I can't prove it. Maybe the constant $2$ on the right hand side can be replaced by the better constant $\sqrt{2}$?

Thank you.


[1]: https://math.stackexchange.com/questions/522163/how-prove-this-analysis-function-a-le-frac12


We'll first assume that $0 \le x < y$.

I need three kinds of estimates here.

1. $\left| x \sin \frac{1}{x} - y \sin \frac{1}{y} \right| \le x + y$
2. $\left| x \sin \frac{1}{x} - y \sin \frac{1}{y} \right| \le 2$
3. $\left| x \sin \frac{1}{x} - y \sin \frac{1}{y} \right| \le \frac{y}{x} - 1$

Estimates 1 and 2 are trivial: $\left| x \sin \frac{1}{x} \right| \le \min(x, 1)$

Estimate 3 is proved as follows.

- First we show that $\left| (x \sin \frac{1}{x})^\prime \right| \le \frac{1}{x}$. Indeed, $(x \sin \frac{1}{x})^{\prime\prime} = - \frac{1}{x^3} \sin \frac{1}{x}$, so local maxima and minima of $(x \sin \frac{1}{x})^\prime$ are located at $\frac{1}{\pi n}, n \in \mathbb{N}$, and its values there are $\frac{(-1)^n}{\pi n}$, so that $\sup_{z \ge x} \left| (z \sin \frac{1}{z})^\prime \right| \le \frac{1}{\pi n} \le \frac{1}{x}$, where $\frac{1}{\pi n}$ is the smallest one in $[x,+\infty)$.
- Now $\left| x \sin \frac{1}{x} - y \sin \frac{1}{y} \right| \le \intop_x^y \frac{1}{z} dz = \log \frac{y}{x} \le \frac{y}{x} - 1$

Now let's find the three regions corresponding to:

1. $x + y \le C \sqrt{y - x}$
2. $2 \le C \sqrt{y - x}$
3. $\frac{y}{x} - 1 \le C \sqrt{y - x}$

and choose the constant $C$ in such a way that these regions cover $\{0 < x < y\}$. Clearly, 2 is bounded by a line, 1 and 3 are bounded by parabolas. Miraculously, $C = 2$ is the unique value when the three boundaries intersect at a single point, namely $(x,y) = (1/2, 3/2)$...

Anyway, let's rewrite our regions for $C = 2$:

1. $y-x \ge \frac{1}{4} (x+y)^2$
2. $y-x \ge 1$
3. $y-x \le 4 x^2$

So to cover the whole space we have to prove $y-x \ge \frac{1}{4} (x+y)^2$ on $\{4 x^2 \le y-x \le 1\}$, for which it is sufficient to consider just the two boundary cases, namely $y-x = 1$ and $y-x = 4 x^2$, since a quadratic polynomial with positive leading term attains maximum on the boundary of a segment. And these cases are easy to verify. Indeed, the inequality in terms of $x$ and $z := y-x$ looks like $x^2 + xz + \frac{1}{4} z^2 \le z$; for $z=1$ it's equivalent to $(x + \frac{1}{2})^2 \le 1$, which is true, since $4 x^2 \le 1$; for $z = 4 x^2$ it's equivalent to $3 x^2 \ge 4 x^3 + 4 x^4$, which follows once again from $4 x^2 \le 1$ (since $x^2 \ge 2 x^3$ and $x^2 \ge 4 x^4$).

Now the case $x < 0 < y$ is even simpler. We only need analogs of estimates 1 and 2:

1. $\left| x \sin \frac{1}{x} - y \sin \frac{1}{y} \right| \le |x| + |y| \le C \sqrt{|x| + |y|}$ whenever $|x| + |y| \le C^2 = 4$
2. $\left| x \sin \frac{1}{x} - y \sin \frac{1}{y} \right| \le 2 \le C \sqrt{|x| + |y|}$ whenever $|x| + |y| \ge (\frac{2}{C})^2 = 1$.


This is a partial alternative solution for the case $\left|\frac{1}{x}-\frac{1}{y}\right|\leq 1$.

We can clearly assume that both $x$ and $y$ are positive, then, through the substitutions $x\to 1/x,y\to 1/y$, prove that:
$$ \forall x,y>0,x\neq y,\quad (y\sin x-x\sin y)^2 < 4xy|y-x|. $$
The LHS can be written as:
$$ \left((y-x)\sin x + x\,(\sin x-\sin y)\right)^2, $$
that, by the Cauchy-Schwarz inequality, satisfies:
$$ \left((y-x)\sin x + x\,(\sin x-\sin y)\right)^2 \leq (x^2+\sin^2 x)\left((y-x)^2+(\sin y-\sin x)^2\right), $$
and the RHS is less than $4x^2(y-x)^2$, since $\sin x$ is a $1$-Lipschitz function.

By exchanging $x$ and $y$, we have:
$$ (y\sin x-x\sin y)^2 < \min\left(4x^2(y-x)^2,4y^2(y-x)^2\right)<4xy(y-x)^2,$$
so the inequality is clearly true if $|y-x|\leq 1$.


?

?

https://math.stackexchange.com/q/501984/165013

show that
>$$\mathop {\lim }\limits_{n \to \infty } \left( {\int\limits_0^{\frac{\pi }{2}} {\left\vert\frac{{\sin \left( {2n + 1} \right)x}}{{\sin x}}\right\vert\,dx - \frac{{2\ln n}}{\pi }} } \right) = \frac{{6\ln 2}}{\pi } + \frac{{2\gamma }}{\pi } + \frac{2}{\pi }\sum\limits_{k = 1}^\infty {\frac{1}{{2k + 1}}\ln \left( {1 + \frac{1}{k}} \right)}\cdots (1) $$

I can prove $(1)$ it exsit it.and also it is well kown that
$$I_{n}=\int_{0}^{\frac{\pi}{2}}\dfrac{\sin{(2n+1)x}}{\sin{x}}dx=\dfrac{\pi}{2}$$

>proof:$$I_{n}-I_{n-1}=\int_{0}^{\frac{\pi}{2}}\dfrac{\sin{(2n+1)x}-\sin{(2n-1)x}}{\sin{x}}dx=2\int_{0}^{\frac{\pi}{2}}\cos{(2nx)}dx=0$$
so
$$I_{n}=I_{n-1}=\cdots=I_{0}=\dfrac{\pi}{2}$$
But I can't prove $(1)$,Thank you


?

Notice for any continuous function $f(x)$ on $[0,\frac{\pi}{2}]$, we have:

$$\lim_{n\to\infty} \int_0^{\frac{\pi}{2}} \Big|\sin((2n+1)x)\Big| f(x) dx = \frac{2}{\pi}\int_0^{\frac{\pi}{2}} f(x) dx$$

Apply this to $\frac{1}{\sin x} - \frac{1}{x}$, we get

$$\lim_{n\to\infty} \int_0^{\frac{\pi}{2}} \Big|\sin((2n+1)x)\Big| \Big(\frac{1}{\sin x} - \frac{1}{x} \Big) dx
= \frac{2}{\pi} \int_0^{\frac{\pi}{2}} \Big(\frac{1}{\sin x} - \frac{1}{x} \Big) dx\\
= \frac{2}{\pi} \left[\log\left(\frac{\tan(\frac{x}{2})}{x}\right)\right]_0^{\frac{\pi}{2}}
= \frac{2}{\pi} \left[\log\frac{2}{\pi} - \log{\frac12}\right] = \frac{2}{\pi} \log\frac{4}{\pi}
\tag{*1}$$
So it suffices to figure out the asymptotic behavior of following integral:

$$\int_0^{\frac{\pi}{2}} \frac{|\sin((2n+1)x)|}{x} dx
= \int_0^{\pi(n+\frac12)} \frac{|\sin x|}{x} dx = \int_0^{\pi n} \frac{|\sin x|}{x} dx + O(\frac{1}{n})
$$
We can rewrite the rightmost integral as

$$\int_0^{\pi} \sin x \Big( \sum_{k=0}^{n-1} \frac{1}{x+k\pi} \Big) dx
= \int_0^1 \sin(\pi x) \Big( \sum_{k=0}^{n-1} \frac{1}{x+k} \Big) dx\\
= \int_0^1 \sin(\pi x) \Big( \psi(x+n) - \psi(x) \Big) dx
\tag{*2}
$$
where $\displaystyle \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$ is the
[digamma function](http://en.wikipedia.org/wiki/Digamma_function).

Using following asymptotic expansion of $\psi(x)$ for large $x$:

$$\psi(x) = \log x - \frac{1}{2x} + \sum_{k=1}^{\infty}\frac{\zeta(1-2k)}{x^{2k}}$$
It is easy to verify
$$\int_0^1 \sin(\pi x)\psi(x+n) dx = \frac{2}{\pi} \log n + O(\frac{1}{n})\tag{*3}$$.

Substitute $(*3)$ into $(*2)$ and combine it with $(*1)$, we get

$$\lim_{n\to\infty} \left(\int_0^{\frac{\pi}{2}} \left|\frac{\sin((2n+1)x)}{\sin x}\right| dx - \frac{2}{\pi} \log n\right) = \frac{2}{\pi} \log\frac{4}{\pi} - \int_0^1 \sin(\pi x)\psi(x) dx \tag{*4}$$
To compute the rightmost integral of $(*4)$, we first integrate it by part:

$$\int_0^1 \sin(\pi x)\psi(x) dx = \int_0^1 \sin(\pi x)\,d\log\Gamma(x) =
-\pi\int_0^1 \cos(\pi x)\log\Gamma(x) dx
$$
We then apply following result$\color{blue}{^{[1]}}$
> **Kummer (1847)** Fourier series for $\log\Gamma(x)$ for $x \in (0,1)$
> $$\log\Gamma(x) = \frac12\log\frac{\pi}{\sin(\pi x)} + (\gamma + \log(2\pi))(\frac12 - x) + \frac{1}{\pi}\sum_{k=2}^{\infty}\frac{\log k}{k}\sin(2\pi k x)$$

Notice

1. $\displaystyle \int_0^1 \cos(\pi x)\log \frac{\pi}{\sin(\pi x)} dx = 0\quad$ because of symmtry.

2. $\displaystyle \int_0^1 \cos(\pi x)\Big(\frac12 - x\Big) dx = \frac{2}{\pi^2}$

3. $\displaystyle \int_0^1 \cos(\pi x)\sin(2\pi k x) dx = \frac{4k}{(4k^2-1)\pi} $

We can evaluate RHS of $(*4)$ as
$$\begin{align}
\text{RHS}_{(*4)} = & \frac{2}{\pi}\log\frac{4}{\pi} + \pi \left[
\Big(\gamma + \log(2\pi)\Big)\frac{2}{\pi^2}
+ \frac{4}{\pi^2}\sum_{k=2}^{\infty}\frac{\log k}{4k^2-1}
\right]\\
= & \frac{2}{\pi}\left[\log 8 + \gamma + \sum_{k=2}^{\infty}\log k \left(\frac{1}{2k-1}-\frac{1}{2k+1}\right) \right]\\
= & \frac{6\log 2}{\pi} + \frac{2\gamma}{\pi} + \frac{2}{\pi}\sum_{k=1}\frac{\log(1+\frac{1}{k})}{2k+1}
\end{align}$$

***Notes***

$\color{blue}{[1]}$ For more infos about Kummer's Fourier series, please see
following [paper](http://arxiv.org/abs/0903.4323) by Donal F. Connon.


?

?

AMM Problem 11777, Vol.121, May 2014

令$n\geq 3$, $x_1,\ldots,x_n$為實數使得$\prod_{k=1}^{n}x_k=1$.證明
\[\sum_{k=1}^{\infty}{\frac{x_{k}^{2}}{x_{k}^{2}-2x_k\cos \left( 2\pi /n \right) +1}}\ge 1.\]

注:不等式對于$n=1,2$不成立,例如取$x_1=x_2=1$.

若$z_1,\ldots,z_n$和$w_1,\ldots,w_n$為復數,則由Lagrange恒等式可知
\[\left( \sum_{k=1}^n{\left| z_k \right|^2} \right) \left( \sum_{k=1}^n{\left| w_k \right|^2} \right) -\left| \sum_{k=1}^n{z_kw_k} \right|^2=\sum_{1\le k<j\le n}{\left| z_k\overline{w_j}-z_j\overline{w_k} \right|^2}.\]
令$w_k=c_k\in\mathbb{R}^+$, 令$z_k=c_ky_k$且$y_k\in\mathbb{C}$,由上述不等式可知
\[\left( \sum_{k=1}^n{c_{k}^{2}\left| y_k \right|^2} \right) \left( \sum_{k=1}^n{c_{k}^{2}} \right) \ge \sum_{1\le k<j\le n}{c_{k}^{2}c_{j}^{2}\left| y_k-y_j \right|^2}\ge \sum_{k=1}^n{c_{k}^{2}c_{k+1}^{2}\left| y_k-y_{k+1} \right|^2},\]
第二個不等式對$n\geq 3$成立當且僅當$c_{n+1}=c_1,y_{n+1}=y_1$.

設$y_1,\ldots,y_n$互異,并令$c_k=1/|y_k-y_{k+1}|>0$,我們有
\[\sum_{k=1}^n{\frac{\left| y_k \right|^2}{\left| y_k-y_{k+1} \right|^2}}\ge 1.\]
最后,令$y_{k+1}/y_k=e^{2\pi i/n}/x_k\neq 1$,則
\[\prod_{k=1}^n{\frac{y_{k+1}}{y_k}}=\frac{\left( e^{2\pi i/n} \right) ^n}{\prod_{k=1}^n{x_k}}=1.\]
因此
\begin{align*}
\sum_{k=1}^n{\frac{x_{k}^{2}}{x_{k}^{2}-2x_k\cos \left( 2\pi /n \right) +1}}&=\sum_{k=1}^n{\frac{x_{k}^{2}}{\left| x_k-e^{2\pi i/n} \right|^2}}
\\
&=\sum_{k=1}^n{\frac{1}{\left| 1-y_{k+1}/y_k \right|^2}}=\sum_{k=1}^n{\frac{\left| y_k \right|^2}{\left| y_k-y_{k+1} \right|^2}}\ge 1.
\end{align*}

轉載于:https://www.cnblogs.com/Eufisky/p/9880529.html

總結

以上是生活随笔為你收集整理的美国数学月刊问题18-10-31的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

国产精品多人p群无码 | 亚欧洲精品在线视频免费观看 | 97无码免费人妻超级碰碰夜夜 | 国产人妻人伦精品 | 夜夜夜高潮夜夜爽夜夜爰爰 | 国产午夜福利亚洲第一 | 少女韩国电视剧在线观看完整 | 亚洲国精产品一二二线 | 亚洲 高清 成人 动漫 | 久久久久av无码免费网 | 国产成人精品优优av | 亚洲成色www久久网站 | 亚洲日韩精品欧美一区二区 | 国产精品无码永久免费888 | 欧美性生交活xxxxxdddd | 女高中生第一次破苞av | 欧美激情内射喷水高潮 | 99精品无人区乱码1区2区3区 | 日本www一道久久久免费榴莲 | 白嫩日本少妇做爰 | 最近免费中文字幕中文高清百度 | 性生交片免费无码看人 | 成年女人永久免费看片 | 少妇高潮喷潮久久久影院 | 我要看www免费看插插视频 | 亚洲欧美日韩成人高清在线一区 | 国产深夜福利视频在线 | 熟妇女人妻丰满少妇中文字幕 | 女人被爽到呻吟gif动态图视看 | 国产无套内射久久久国产 | 丰满少妇人妻久久久久久 | 熟女少妇在线视频播放 | 永久黄网站色视频免费直播 | 天堂在线观看www | 又大又黄又粗又爽的免费视频 | 日韩精品a片一区二区三区妖精 | 日本乱人伦片中文三区 | 免费观看的无遮挡av | 国产精品国产三级国产专播 | 性欧美牲交xxxxx视频 | 精品 日韩 国产 欧美 视频 | 人妻少妇精品无码专区二区 | 日韩精品久久久肉伦网站 | 天干天干啦夜天干天2017 | 日日摸日日碰夜夜爽av | 奇米影视7777久久精品人人爽 | 内射老妇bbwx0c0ck | 精品偷自拍另类在线观看 | 亚洲精品成a人在线观看 | 亚洲 激情 小说 另类 欧美 | 欧美人与牲动交xxxx | 青草视频在线播放 | 少妇无码一区二区二三区 | 国产人妻大战黑人第1集 | 亚洲va中文字幕无码久久不卡 | 亚洲精品国偷拍自产在线麻豆 | 成人性做爰aaa片免费看 | 成人一在线视频日韩国产 | 动漫av网站免费观看 | 亚洲日韩av一区二区三区四区 | 久久天天躁夜夜躁狠狠 | 色噜噜亚洲男人的天堂 | 日本爽爽爽爽爽爽在线观看免 | 国产成人无码av片在线观看不卡 | 全球成人中文在线 | 日韩精品无码一本二本三本色 | 国产无遮挡吃胸膜奶免费看 | 亚洲精品一区二区三区四区五区 | 日韩少妇内射免费播放 | 狂野欧美性猛xxxx乱大交 | 无套内谢的新婚少妇国语播放 | 日韩 欧美 动漫 国产 制服 | 国产另类ts人妖一区二区 | 亚洲国产精品无码久久久久高潮 | 久久久久久久女国产乱让韩 | 色情久久久av熟女人妻网站 | 久久综合网欧美色妞网 | 国语精品一区二区三区 | 国产精品va在线观看无码 | 爆乳一区二区三区无码 | 国产精品igao视频网 | 丁香花在线影院观看在线播放 | 国产成人av免费观看 | 亚洲人亚洲人成电影网站色 | 久久zyz资源站无码中文动漫 | 亚洲精品鲁一鲁一区二区三区 | 亚洲精品成a人在线观看 | 女人被男人躁得好爽免费视频 | 国产成人一区二区三区在线观看 | 999久久久国产精品消防器材 | 色偷偷人人澡人人爽人人模 | 亚洲а∨天堂久久精品2021 | 国产人妻大战黑人第1集 | 国产三级久久久精品麻豆三级 | 亚洲精品国产a久久久久久 | 漂亮人妻洗澡被公强 日日躁 | 精品国偷自产在线 | 国产va免费精品观看 | 午夜熟女插插xx免费视频 | 欧美xxxxx精品 | 少妇的肉体aa片免费 | 久久人人爽人人人人片 | 色爱情人网站 | 国产成人无码一二三区视频 | 日本大乳高潮视频在线观看 | 成人一区二区免费视频 | 激情国产av做激情国产爱 | 亚洲爆乳大丰满无码专区 | 永久免费精品精品永久-夜色 | 在线精品亚洲一区二区 | 精品一二三区久久aaa片 | 亚洲精品美女久久久久久久 | 一本大道伊人av久久综合 | 中文字幕无码热在线视频 | 在线天堂新版最新版在线8 | 伊在人天堂亚洲香蕉精品区 | 亚洲欧洲日本无在线码 | 国产美女精品一区二区三区 | 成人av无码一区二区三区 | 波多野结衣高清一区二区三区 | 国产成人无码区免费内射一片色欲 | 少女韩国电视剧在线观看完整 | 99久久精品日本一区二区免费 | 亚洲色无码一区二区三区 | 久久久久久亚洲精品a片成人 | 午夜无码区在线观看 | 理论片87福利理论电影 | 亚洲无人区一区二区三区 | 大肉大捧一进一出视频出来呀 | 沈阳熟女露脸对白视频 | 中文久久乱码一区二区 | 欧洲熟妇色 欧美 | 丰满妇女强制高潮18xxxx | 亚洲乱亚洲乱妇50p | 性色欲网站人妻丰满中文久久不卡 | 亚洲中文字幕无码中字 | 国产精品久久国产精品99 | 无码av岛国片在线播放 | 色综合久久88色综合天天 | 亚洲欧美日韩成人高清在线一区 | 97夜夜澡人人爽人人喊中国片 | 久久97精品久久久久久久不卡 | 亚洲另类伦春色综合小说 | 国产精品亚洲一区二区三区喷水 | 国产一区二区不卡老阿姨 | 永久免费精品精品永久-夜色 | 国产精品第一区揄拍无码 | 无码人妻丰满熟妇区五十路百度 | 未满小14洗澡无码视频网站 | 国产女主播喷水视频在线观看 | 福利一区二区三区视频在线观看 | 午夜理论片yy44880影院 | 中文字幕 亚洲精品 第1页 | 国产偷抇久久精品a片69 | 久久午夜无码鲁丝片午夜精品 | 亚洲熟悉妇女xxx妇女av | 国产精品久久久久久久9999 | 最近的中文字幕在线看视频 | 55夜色66夜色国产精品视频 | 波多野结衣高清一区二区三区 | 欧美黑人巨大xxxxx | 精品人妻中文字幕有码在线 | 日韩视频 中文字幕 视频一区 | 无套内谢的新婚少妇国语播放 | 色欲久久久天天天综合网精品 | 天天爽夜夜爽夜夜爽 | 亚洲精品成人av在线 | 欧美国产亚洲日韩在线二区 | 国产精品人人妻人人爽 | 中文无码成人免费视频在线观看 | 日本乱人伦片中文三区 | 无码午夜成人1000部免费视频 | 国产69精品久久久久app下载 | 夫妻免费无码v看片 | 2020久久香蕉国产线看观看 | 欧美熟妇另类久久久久久不卡 | 久久久久人妻一区精品色欧美 | 东京无码熟妇人妻av在线网址 | 乱中年女人伦av三区 | 国产农村妇女高潮大叫 | 国产亚洲人成在线播放 | 久久天天躁夜夜躁狠狠 | 十八禁视频网站在线观看 | 一本久久a久久精品亚洲 | 人人妻人人澡人人爽精品欧美 | 99久久精品午夜一区二区 | 久久精品视频在线看15 | 成人av无码一区二区三区 | 国产午夜无码精品免费看 | 女人被爽到呻吟gif动态图视看 | 亚洲日韩一区二区三区 | 国产免费久久久久久无码 | 99国产欧美久久久精品 | 国内丰满熟女出轨videos | 亚洲一区二区三区在线观看网站 | 男人的天堂av网站 | 亚洲国产欧美在线成人 | 少妇性l交大片欧洲热妇乱xxx | 搡女人真爽免费视频大全 | 亚洲欧美国产精品专区久久 | 欧美亚洲国产一区二区三区 | 日本成熟视频免费视频 | 亚洲va中文字幕无码久久不卡 | 久久熟妇人妻午夜寂寞影院 | 日本一区二区更新不卡 | 成年女人永久免费看片 | 色情久久久av熟女人妻网站 | 国产精品久久久久7777 | 日日摸夜夜摸狠狠摸婷婷 | 久久这里只有精品视频9 | 撕开奶罩揉吮奶头视频 | 无码人妻黑人中文字幕 | 久久人人爽人人爽人人片ⅴ | 国产精品久久精品三级 | 天堂久久天堂av色综合 | 青青久在线视频免费观看 | 久久亚洲国产成人精品性色 | 人妻少妇精品视频专区 | 国产综合在线观看 | 小sao货水好多真紧h无码视频 | 毛片内射-百度 | www国产精品内射老师 | 日韩少妇内射免费播放 | 18禁止看的免费污网站 | 无码av岛国片在线播放 | 久久国产精品精品国产色婷婷 | 国产精品人妻一区二区三区四 | 丰满妇女强制高潮18xxxx | 中文字幕 亚洲精品 第1页 | 日日麻批免费40分钟无码 | 色情久久久av熟女人妻网站 | 国产成人精品三级麻豆 | 国产精品对白交换视频 | 露脸叫床粗话东北少妇 | 疯狂三人交性欧美 | 成人欧美一区二区三区 | 日本成熟视频免费视频 | 精品国产福利一区二区 | 亚洲精品一区二区三区在线 | 日日碰狠狠躁久久躁蜜桃 | 一本色道久久综合狠狠躁 | 久久亚洲中文字幕无码 | 国产精品99爱免费视频 | 无码av岛国片在线播放 | 亚洲乱码日产精品bd | 成人一在线视频日韩国产 | 人妻天天爽夜夜爽一区二区 | 精品成在人线av无码免费看 | 国精品人妻无码一区二区三区蜜柚 | 野狼第一精品社区 | 男人的天堂2018无码 | 国产熟妇另类久久久久 | 97se亚洲精品一区 | 大地资源网第二页免费观看 | 精品无人区无码乱码毛片国产 | 国产色精品久久人妻 | 亚洲日韩精品欧美一区二区 | 久久无码人妻影院 | 国产亚洲人成在线播放 | 奇米综合四色77777久久 东京无码熟妇人妻av在线网址 | 国产亚洲精品久久久久久 | 性欧美牲交xxxxx视频 | 久久久精品456亚洲影院 | 无码人妻精品一区二区三区下载 | 性欧美熟妇videofreesex | 中文字幕无码免费久久9一区9 | 国产卡一卡二卡三 | 亚洲无人区午夜福利码高清完整版 | 亚洲狠狠色丁香婷婷综合 | 亚洲一区二区三区偷拍女厕 | 国产后入清纯学生妹 | 国产乱人偷精品人妻a片 | 麻豆果冻传媒2021精品传媒一区下载 | 人人妻人人澡人人爽精品欧美 | 欧美老熟妇乱xxxxx | 中文字幕亚洲情99在线 | 色婷婷av一区二区三区之红樱桃 | 国产精品丝袜黑色高跟鞋 | 久久久无码中文字幕久... | 大地资源网第二页免费观看 | 亚洲综合无码一区二区三区 | 樱花草在线社区www | 东京热一精品无码av | 国产色精品久久人妻 | 欧美丰满熟妇xxxx | 亚洲一区二区三区含羞草 | 亚洲 日韩 欧美 成人 在线观看 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 亚洲午夜无码久久 | 欧美精品一区二区精品久久 | 亚洲综合无码久久精品综合 | 国产亚洲精品久久久闺蜜 | 国产精品人人妻人人爽 | 成人免费无码大片a毛片 | 综合激情五月综合激情五月激情1 | 国产精品丝袜黑色高跟鞋 | 亚洲日韩av一区二区三区中文 | 亚洲精品美女久久久久久久 | 又大又黄又粗又爽的免费视频 | 日本大香伊一区二区三区 | 亚洲爆乳精品无码一区二区三区 | 中文无码成人免费视频在线观看 | 亚洲国产午夜精品理论片 | 国产成人无码一二三区视频 | 亚洲欧洲日本无在线码 | 亚洲午夜福利在线观看 | 国产午夜手机精彩视频 | 丰满少妇高潮惨叫视频 | 亚洲成a人片在线观看无码 | 国产熟妇另类久久久久 | 无码人妻黑人中文字幕 | 67194成是人免费无码 | 国产女主播喷水视频在线观看 | 曰韩少妇内射免费播放 | 双乳奶水饱满少妇呻吟 | 波多野结衣乳巨码无在线观看 | 久久久久久国产精品无码下载 | 欧美午夜特黄aaaaaa片 | 久久99精品国产麻豆蜜芽 | 少妇无码一区二区二三区 | 自拍偷自拍亚洲精品被多人伦好爽 | 久久精品一区二区三区四区 | 人人妻人人澡人人爽欧美一区 | 波多野结衣av在线观看 | 一二三四社区在线中文视频 | 秋霞成人午夜鲁丝一区二区三区 | 狠狠噜狠狠狠狠丁香五月 | 国产精品无码mv在线观看 | 亚洲天堂2017无码中文 | 欧美人与禽猛交狂配 | 日韩精品一区二区av在线 | 中文字幕无码视频专区 | 日产精品高潮呻吟av久久 | 国产婷婷色一区二区三区在线 | 丰满妇女强制高潮18xxxx | 日韩精品成人一区二区三区 | 99久久婷婷国产综合精品青草免费 | 久精品国产欧美亚洲色aⅴ大片 | 国产超级va在线观看视频 | 99久久亚洲精品无码毛片 | 妺妺窝人体色www在线小说 | 久久精品女人天堂av免费观看 | 67194成是人免费无码 | 性生交大片免费看女人按摩摩 | 国产精品毛片一区二区 | 久久国内精品自在自线 | 国产极品美女高潮无套在线观看 | 亚洲va欧美va天堂v国产综合 | 亚洲欧美国产精品专区久久 | 国产69精品久久久久app下载 | 九九久久精品国产免费看小说 | 扒开双腿吃奶呻吟做受视频 | 无码国产乱人伦偷精品视频 | 欧美老妇交乱视频在线观看 | 精品国产一区二区三区四区 | 麻豆精品国产精华精华液好用吗 | 久久国内精品自在自线 | 国产精品理论片在线观看 | 日韩精品成人一区二区三区 | 在线 国产 欧美 亚洲 天堂 | 精品一区二区三区无码免费视频 | 亚欧洲精品在线视频免费观看 | 欧美日韩色另类综合 | www成人国产高清内射 | 国产精品爱久久久久久久 | 久精品国产欧美亚洲色aⅴ大片 | 久久亚洲精品中文字幕无男同 | 天天做天天爱天天爽综合网 | 午夜不卡av免费 一本久久a久久精品vr综合 | 国产精品香蕉在线观看 | 日本肉体xxxx裸交 | 骚片av蜜桃精品一区 | a国产一区二区免费入口 | 精品欧美一区二区三区久久久 | 久久午夜无码鲁丝片午夜精品 | 一本久道久久综合狠狠爱 | 亚洲男人av天堂午夜在 | 无码人妻少妇伦在线电影 | 无码中文字幕色专区 | 国产尤物精品视频 | 中文字幕久久久久人妻 | 欧美日韩人成综合在线播放 | 两性色午夜免费视频 | 两性色午夜免费视频 | 久久99精品久久久久婷婷 | 日韩精品久久久肉伦网站 | 国产精华av午夜在线观看 | 成人精品视频一区二区三区尤物 | 成人一区二区免费视频 | 妺妺窝人体色www在线小说 | 亚洲综合精品香蕉久久网 | 成人亚洲精品久久久久 | 爽爽影院免费观看 | 成人无码精品1区2区3区免费看 | 亚洲成av人综合在线观看 | 捆绑白丝粉色jk震动捧喷白浆 | 国产精品人人爽人人做我的可爱 | 国产午夜福利100集发布 | 中国女人内谢69xxxx | 国产亚洲精品久久久久久久久动漫 | 午夜福利试看120秒体验区 | 在线亚洲高清揄拍自拍一品区 | 日韩人妻无码一区二区三区久久99 | 爽爽影院免费观看 | 久精品国产欧美亚洲色aⅴ大片 | 亚洲国产精品一区二区美利坚 | 国产人妻人伦精品1国产丝袜 | 99久久精品午夜一区二区 | 久久熟妇人妻午夜寂寞影院 | 精品无码一区二区三区的天堂 | 亚洲 另类 在线 欧美 制服 | 久久精品成人欧美大片 | 欧美人妻一区二区三区 | 日韩亚洲欧美中文高清在线 | 性色欲网站人妻丰满中文久久不卡 | 亚洲欧美精品aaaaaa片 | 国产深夜福利视频在线 | 又黄又爽又色的视频 | 亚洲色偷偷男人的天堂 | 日韩 欧美 动漫 国产 制服 | 麻豆人妻少妇精品无码专区 | 大乳丰满人妻中文字幕日本 | 国产三级久久久精品麻豆三级 | 内射后入在线观看一区 | 99久久久无码国产aaa精品 | 欧美乱妇无乱码大黄a片 | 亚无码乱人伦一区二区 | 少妇性l交大片欧洲热妇乱xxx | 色一情一乱一伦一区二区三欧美 | 国内少妇偷人精品视频 | 亚洲日韩中文字幕在线播放 | 天天av天天av天天透 | 中文毛片无遮挡高清免费 | 香港三级日本三级妇三级 | 蜜桃av抽搐高潮一区二区 | 欧美丰满熟妇xxxx性ppx人交 | 麻豆国产97在线 | 欧洲 | 久久综合九色综合欧美狠狠 | 午夜时刻免费入口 | 丰满岳乱妇在线观看中字无码 | 男女爱爱好爽视频免费看 | 丁香花在线影院观看在线播放 | 亚洲男人av香蕉爽爽爽爽 | 丰满妇女强制高潮18xxxx | 一二三四社区在线中文视频 | 国产猛烈高潮尖叫视频免费 | 欧美乱妇无乱码大黄a片 | 成人无码精品1区2区3区免费看 | 又湿又紧又大又爽a视频国产 | 精品 日韩 国产 欧美 视频 | 国产精品香蕉在线观看 | 97人妻精品一区二区三区 | 天天av天天av天天透 | 亚洲欧洲日本无在线码 | 亚洲自偷精品视频自拍 | 99精品国产综合久久久久五月天 | 欧美三级a做爰在线观看 | 成人av无码一区二区三区 | 日本www一道久久久免费榴莲 | 欧洲欧美人成视频在线 | 欧美日本日韩 | 精品人妻中文字幕有码在线 | 无码乱肉视频免费大全合集 | 精品偷拍一区二区三区在线看 | 成 人 网 站国产免费观看 | 日本一区二区三区免费播放 | 精品人妻人人做人人爽 | 欧美精品无码一区二区三区 | 美女扒开屁股让男人桶 | 久久亚洲a片com人成 | 日韩亚洲欧美精品综合 | 国产精品va在线播放 | 丰满人妻翻云覆雨呻吟视频 | 亚洲精品一区二区三区在线观看 | 永久免费观看美女裸体的网站 | 亚洲第一无码av无码专区 | 中文字幕人成乱码熟女app | 人妻夜夜爽天天爽三区 | 久久综合给合久久狠狠狠97色 | 亚洲 a v无 码免 费 成 人 a v | 亚洲成色www久久网站 | 欧美 日韩 人妻 高清 中文 | 欧美性生交xxxxx久久久 | 67194成是人免费无码 | 久久国内精品自在自线 | 自拍偷自拍亚洲精品10p | 美女毛片一区二区三区四区 | 特大黑人娇小亚洲女 | 76少妇精品导航 | 国产成人无码午夜视频在线观看 | 丰满诱人的人妻3 | 永久免费精品精品永久-夜色 | 无码人妻久久一区二区三区不卡 | 狠狠亚洲超碰狼人久久 | 特级做a爰片毛片免费69 | 六月丁香婷婷色狠狠久久 | 久久亚洲中文字幕无码 | 男女下面进入的视频免费午夜 | 日本熟妇大屁股人妻 | 亚洲国产精品久久人人爱 | 国产精品久久久 | 久久综合狠狠综合久久综合88 | 无码av中文字幕免费放 | 人妻体内射精一区二区三四 | 夫妻免费无码v看片 | 麻豆md0077饥渴少妇 | 中文无码精品a∨在线观看不卡 | 久久99热只有频精品8 | 东京一本一道一二三区 | 伊人久久大香线蕉亚洲 | 亚洲aⅴ无码成人网站国产app | 亚洲男人av天堂午夜在 | 欧美自拍另类欧美综合图片区 | 国产一区二区不卡老阿姨 | 扒开双腿疯狂进出爽爽爽视频 | 精品无码一区二区三区的天堂 | 国产精品久久久久9999小说 | 亚洲综合久久一区二区 | 亚洲成av人片天堂网无码】 | 亚洲乱码日产精品bd | 亚洲精品午夜无码电影网 | 激情人妻另类人妻伦 | 欧美人与禽zoz0性伦交 | 亚洲天堂2017无码中文 | 久激情内射婷内射蜜桃人妖 | 久久精品99久久香蕉国产色戒 | 理论片87福利理论电影 | 99麻豆久久久国产精品免费 | 国产色视频一区二区三区 | 欧美老人巨大xxxx做受 | 又大又硬又黄的免费视频 | 久久人人爽人人爽人人片ⅴ | 午夜精品一区二区三区在线观看 | 无码纯肉视频在线观看 | 综合激情五月综合激情五月激情1 | 久久99精品久久久久久 | 亚洲 高清 成人 动漫 | 青青青爽视频在线观看 | 免费网站看v片在线18禁无码 | 久久久久久久久蜜桃 | 国产人妻人伦精品1国产丝袜 | 日本熟妇浓毛 | 久久久久国色av免费观看性色 | 中国大陆精品视频xxxx | 国产乱子伦视频在线播放 | 国产日产欧产精品精品app | 国产内射爽爽大片视频社区在线 | 欧美成人午夜精品久久久 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 国产 浪潮av性色四虎 | 麻豆国产人妻欲求不满谁演的 | 99久久亚洲精品无码毛片 | 久久精品视频在线看15 | 永久黄网站色视频免费直播 | 亚洲精品国产精品乱码视色 | 任你躁在线精品免费 | 亚洲天堂2017无码中文 | 狠狠亚洲超碰狼人久久 | a在线观看免费网站大全 | 伊在人天堂亚洲香蕉精品区 | 亚洲日韩av片在线观看 | 午夜精品一区二区三区的区别 | 欧美老人巨大xxxx做受 | 亚洲s码欧洲m码国产av | 日本xxxx色视频在线观看免费 | 97无码免费人妻超级碰碰夜夜 | 老熟妇乱子伦牲交视频 | 天堂在线观看www | 丰满少妇人妻久久久久久 | 欧美刺激性大交 | 亚洲国产综合无码一区 | 日本精品高清一区二区 | 97精品国产97久久久久久免费 | a在线亚洲男人的天堂 | 久久久www成人免费毛片 | 久久精品中文闷骚内射 | 中文字幕人妻丝袜二区 | 久久精品丝袜高跟鞋 | 西西人体www44rt大胆高清 | 亚洲欧洲无卡二区视頻 | а√天堂www在线天堂小说 | 人妻尝试又大又粗久久 | 日本又色又爽又黄的a片18禁 | 婷婷综合久久中文字幕蜜桃三电影 | 2019午夜福利不卡片在线 | 亚洲精品成人av在线 | 中文精品无码中文字幕无码专区 | 日日橹狠狠爱欧美视频 | 亚洲精品无码人妻无码 | 国产麻豆精品一区二区三区v视界 | 久久精品女人的天堂av | 久久午夜无码鲁丝片秋霞 | 日韩精品a片一区二区三区妖精 | 亚洲成a人片在线观看无码 | 欧美熟妇另类久久久久久多毛 | 国产精品久久久久久久9999 | 人人妻人人澡人人爽欧美一区九九 | 一本色道久久综合亚洲精品不卡 | 亚洲国产精品久久人人爱 | 成人无码精品一区二区三区 | 国产精品内射视频免费 | 国产精品第一区揄拍无码 | 欧洲精品码一区二区三区免费看 | 97久久国产亚洲精品超碰热 | 日韩少妇白浆无码系列 | 成人精品天堂一区二区三区 | 国产成人一区二区三区在线观看 | 国产特级毛片aaaaaa高潮流水 | 一本色道婷婷久久欧美 | 亚洲无人区一区二区三区 | 亚洲毛片av日韩av无码 | 综合网日日天干夜夜久久 | 日韩精品a片一区二区三区妖精 | 久久精品成人欧美大片 | 亚洲熟熟妇xxxx | 少妇无码av无码专区在线观看 | 亚洲一区av无码专区在线观看 | 日本大乳高潮视频在线观看 | 欧美 日韩 亚洲 在线 | 中文字幕日产无线码一区 | 成熟人妻av无码专区 | 亚洲精品美女久久久久久久 | 亚洲自偷精品视频自拍 | 日日摸日日碰夜夜爽av | 51国偷自产一区二区三区 | 久久综合色之久久综合 | 国产精品亚洲五月天高清 | 偷窥日本少妇撒尿chinese | 2019nv天堂香蕉在线观看 | 中文字幕无码av激情不卡 | 国产成人精品久久亚洲高清不卡 | 久久国产精品二国产精品 | 一本久久伊人热热精品中文字幕 | 啦啦啦www在线观看免费视频 | 色婷婷av一区二区三区之红樱桃 | 激情综合激情五月俺也去 | 亚拍精品一区二区三区探花 | 久久99精品国产麻豆蜜芽 | 亚洲日韩乱码中文无码蜜桃臀网站 | 天天摸天天碰天天添 | 激情亚洲一区国产精品 | 中文字幕乱妇无码av在线 | 国产综合在线观看 | 久久久国产精品无码免费专区 | 欧美亚洲国产一区二区三区 | 日产精品高潮呻吟av久久 | 亚洲欧美中文字幕5发布 | 国产亚洲精品久久久久久大师 | 国产亚洲人成a在线v网站 | 人人爽人人澡人人高潮 | 午夜精品久久久内射近拍高清 | 无码av中文字幕免费放 | 乱人伦中文视频在线观看 | 午夜精品一区二区三区在线观看 | 无码人妻丰满熟妇区五十路百度 | 色婷婷久久一区二区三区麻豆 | 国产精品无码mv在线观看 | 中文字幕乱码中文乱码51精品 | 97无码免费人妻超级碰碰夜夜 | 亚洲の无码国产の无码影院 | 亚洲精品成a人在线观看 | 亚洲日韩av一区二区三区四区 | 久久亚洲中文字幕精品一区 | 国产免费观看黄av片 | 人妻少妇精品无码专区二区 | 中文精品无码中文字幕无码专区 | 国产精品久久久一区二区三区 | 无码精品人妻一区二区三区av | 欧美一区二区三区视频在线观看 | 亚洲aⅴ无码成人网站国产app | 国产偷抇久久精品a片69 | 久久国产精品萌白酱免费 | 国产一区二区三区四区五区加勒比 | 欧美性猛交xxxx富婆 | 国产成人精品无码播放 | 国产成人av免费观看 | 狠狠噜狠狠狠狠丁香五月 | 中文字幕无码热在线视频 | 人妻中文无码久热丝袜 | 国产香蕉尹人综合在线观看 | 亚洲の无码国产の无码步美 | 欧美怡红院免费全部视频 | 久久综合色之久久综合 | 亚洲成色www久久网站 | 国产无遮挡又黄又爽免费视频 | 婷婷五月综合缴情在线视频 | 国产在线无码精品电影网 | 亚洲色在线无码国产精品不卡 | 久久久精品人妻久久影视 | 国产在热线精品视频 | 欧美野外疯狂做受xxxx高潮 | 久久精品国产日本波多野结衣 | 蜜桃视频插满18在线观看 | 欧美三级a做爰在线观看 | 无码纯肉视频在线观看 | 中文字幕日韩精品一区二区三区 | 免费观看激色视频网站 | 久久99精品国产麻豆 | 中文无码伦av中文字幕 | 国产九九九九九九九a片 | 久久久精品成人免费观看 | 精品国精品国产自在久国产87 | 亚洲一区二区三区香蕉 | 国产精品久久久一区二区三区 | 久久久久久亚洲精品a片成人 | 久久zyz资源站无码中文动漫 | 国产精品亚洲综合色区韩国 | 久久精品丝袜高跟鞋 | 中文字幕中文有码在线 | 精品厕所偷拍各类美女tp嘘嘘 | 无码帝国www无码专区色综合 | 丰满人妻一区二区三区免费视频 | 免费观看的无遮挡av | 精品国产av色一区二区深夜久久 | 精品国精品国产自在久国产87 | 日产精品高潮呻吟av久久 | 久久久www成人免费毛片 | 国产综合久久久久鬼色 | 国产一精品一av一免费 | 亚洲熟妇自偷自拍另类 | 亚洲熟悉妇女xxx妇女av | 久久午夜无码鲁丝片午夜精品 | 国产热a欧美热a在线视频 | 国产色视频一区二区三区 | 欧美人与物videos另类 | 国产亚洲美女精品久久久2020 | 少妇高潮一区二区三区99 | 国产人妻精品一区二区三区 | 国产精品无码一区二区桃花视频 | 久久人妻内射无码一区三区 | 蜜臀aⅴ国产精品久久久国产老师 | 国产美女极度色诱视频www | 荫蒂添的好舒服视频囗交 | 成熟妇人a片免费看网站 | 久久99精品久久久久久动态图 | 香港三级日本三级妇三级 | 久久久精品国产sm最大网站 | 久久天天躁夜夜躁狠狠 | а√资源新版在线天堂 | 精品国产乱码久久久久乱码 | 亚洲欧洲中文日韩av乱码 | 国产成人无码区免费内射一片色欲 | 樱花草在线播放免费中文 | 国产午夜亚洲精品不卡下载 | 18精品久久久无码午夜福利 | 日本精品人妻无码77777 天堂一区人妻无码 | 中文字幕日产无线码一区 | 久久久久成人精品免费播放动漫 | 欧美老妇交乱视频在线观看 | 国产精品亚洲综合色区韩国 | 红桃av一区二区三区在线无码av | 国产精品二区一区二区aⅴ污介绍 | 国产精品亚洲а∨无码播放麻豆 | 国产suv精品一区二区五 | 国产精品福利视频导航 | 色五月五月丁香亚洲综合网 | 欧美性生交活xxxxxdddd | yw尤物av无码国产在线观看 | 日韩av无码中文无码电影 | 成熟女人特级毛片www免费 | 国产情侣作爱视频免费观看 | 狂野欧美性猛xxxx乱大交 | 无码国模国产在线观看 | 欧美日韩精品 | 精品夜夜澡人妻无码av蜜桃 | 欧美成人家庭影院 | 久久久久久av无码免费看大片 | 精品乱码久久久久久久 | 亚洲精品一区二区三区四区五区 | 亚洲色偷偷男人的天堂 | 精品欧洲av无码一区二区三区 | 精品人人妻人人澡人人爽人人 | 日日天日日夜日日摸 | 国产特级毛片aaaaaa高潮流水 | 国产成人无码a区在线观看视频app | 亚洲小说图区综合在线 | 久久久久免费精品国产 | 欧美国产日韩亚洲中文 | 熟女少妇在线视频播放 | 亚洲成a人片在线观看无码3d | 国精产品一品二品国精品69xx | 少妇性荡欲午夜性开放视频剧场 | 中文字幕无码免费久久99 | 2020最新国产自产精品 | 高清不卡一区二区三区 | 欧美精品在线观看 | 精品久久久无码中文字幕 | 鲁一鲁av2019在线 | 无码av免费一区二区三区试看 | 中文字幕乱码人妻二区三区 | 国产午夜亚洲精品不卡下载 | 无码一区二区三区在线 | 午夜性刺激在线视频免费 | 激情内射日本一区二区三区 | 亚洲成色在线综合网站 | 国产免费久久精品国产传媒 | 天天躁日日躁狠狠躁免费麻豆 | 少妇无码吹潮 | 日产精品99久久久久久 | 无码一区二区三区在线 | 乱人伦中文视频在线观看 | 午夜嘿嘿嘿影院 | 三上悠亚人妻中文字幕在线 | 亚洲欧美中文字幕5发布 | 欧美zoozzooz性欧美 | 女人和拘做爰正片视频 | 精品无码国产一区二区三区av | 日韩人妻系列无码专区 | 大胆欧美熟妇xx | 国产亚洲欧美日韩亚洲中文色 | 中国女人内谢69xxxxxa片 | 欧美真人作爱免费视频 | 午夜精品一区二区三区的区别 | 欧美熟妇另类久久久久久多毛 | 精品人妻av区 | 东京无码熟妇人妻av在线网址 | 亚洲精品国偷拍自产在线观看蜜桃 | 亚洲乱码中文字幕在线 | 欧美肥老太牲交大战 | 天堂一区人妻无码 | 性啪啪chinese东北女人 | 丰腴饱满的极品熟妇 | 97久久国产亚洲精品超碰热 | 兔费看少妇性l交大片免费 | 国产精品无码成人午夜电影 | 双乳奶水饱满少妇呻吟 | 无套内谢的新婚少妇国语播放 | 精品国产成人一区二区三区 | 久久久久成人精品免费播放动漫 | 亚洲七七久久桃花影院 | 亚洲日韩乱码中文无码蜜桃臀网站 | 人人爽人人爽人人片av亚洲 | 国产成人人人97超碰超爽8 | 久久综合狠狠综合久久综合88 | 亚洲午夜福利在线观看 | 无码国模国产在线观看 | 日本护士xxxxhd少妇 | 人人妻人人澡人人爽欧美精品 | 亚洲の无码国产の无码影院 | 高清无码午夜福利视频 | 人人爽人人澡人人人妻 | 日韩 欧美 动漫 国产 制服 | 国产精品va在线播放 | 精品国产青草久久久久福利 | 亚洲国产精品毛片av不卡在线 | 亚洲a无码综合a国产av中文 | 日韩视频 中文字幕 视频一区 | 无码人妻丰满熟妇区毛片18 | 国产成人精品无码播放 | 蜜臀aⅴ国产精品久久久国产老师 | 玩弄人妻少妇500系列视频 | 日韩欧美中文字幕在线三区 | 久久精品无码一区二区三区 | 日欧一片内射va在线影院 | 久久久精品欧美一区二区免费 | 在线天堂新版最新版在线8 | 国产成人一区二区三区别 | а√天堂www在线天堂小说 | 东京热男人av天堂 | 无码av免费一区二区三区试看 | 夜先锋av资源网站 | 一本久道高清无码视频 | 丰满妇女强制高潮18xxxx | 日本va欧美va欧美va精品 | 亚洲成色在线综合网站 | 性色av无码免费一区二区三区 | 成人精品一区二区三区中文字幕 | 中文字幕人成乱码熟女app | 国产亚洲精品久久久久久大师 | 久久人人爽人人爽人人片ⅴ | 亚洲欧洲日本综合aⅴ在线 | 亚洲日韩一区二区三区 | 国产绳艺sm调教室论坛 | 色一情一乱一伦 | 日本护士xxxxhd少妇 | 久久久久亚洲精品男人的天堂 | 欧美老熟妇乱xxxxx | 国产色视频一区二区三区 | 国产精品久免费的黄网站 | 久久久久免费精品国产 | av无码不卡在线观看免费 | 久久人妻内射无码一区三区 | 人妻尝试又大又粗久久 | 野外少妇愉情中文字幕 | 精品国产青草久久久久福利 | 久久精品国产99久久6动漫 | 99久久精品午夜一区二区 | 国产亚洲日韩欧美另类第八页 | 久久久亚洲欧洲日产国码αv | 亚洲男女内射在线播放 | 日韩精品无码一本二本三本色 | 国产亲子乱弄免费视频 | 色一情一乱一伦一视频免费看 | 国产一区二区不卡老阿姨 | 亚洲国产高清在线观看视频 | 内射后入在线观看一区 | 内射巨臀欧美在线视频 | 中文字幕无码免费久久9一区9 | 亚洲精品一区二区三区在线观看 | 无码播放一区二区三区 | 丝袜 中出 制服 人妻 美腿 | 在线 国产 欧美 亚洲 天堂 | 精品无码av一区二区三区 | 成人动漫在线观看 | 国产精品无码久久av | 精品一区二区三区波多野结衣 | 高潮毛片无遮挡高清免费视频 | 亚洲 激情 小说 另类 欧美 | 白嫩日本少妇做爰 | 天堂在线观看www | 色欲人妻aaaaaaa无码 | 综合激情五月综合激情五月激情1 | 超碰97人人做人人爱少妇 | 亚洲精品国偷拍自产在线麻豆 | 欧美性色19p | 精品人人妻人人澡人人爽人人 | 亚洲成av人片天堂网无码】 | 婷婷综合久久中文字幕蜜桃三电影 | 国产人妻大战黑人第1集 | 人妻尝试又大又粗久久 | 国产免费久久精品国产传媒 | 久久久精品456亚洲影院 | 亚洲精品综合一区二区三区在线 | 国产熟妇另类久久久久 | 国产午夜亚洲精品不卡 | 无码人妻丰满熟妇区五十路百度 | 欧美日韩亚洲国产精品 | 午夜嘿嘿嘿影院 | 人人爽人人澡人人人妻 | 老熟妇仑乱视频一区二区 | 国产午夜精品一区二区三区嫩草 | 久久99精品久久久久久动态图 | 久久这里只有精品视频9 | 亚洲欧美国产精品专区久久 | 国精品人妻无码一区二区三区蜜柚 | 久久综合九色综合97网 | 成在人线av无码免观看麻豆 | 久久久久免费精品国产 | 内射白嫩少妇超碰 | 131美女爱做视频 | 国产欧美熟妇另类久久久 | 国产无套内射久久久国产 | 18禁止看的免费污网站 | 亚洲高清偷拍一区二区三区 | 欧美熟妇另类久久久久久不卡 | 久久天天躁夜夜躁狠狠 | 少妇无码av无码专区在线观看 | av人摸人人人澡人人超碰下载 | 国产激情精品一区二区三区 | 国产成人一区二区三区别 | 高潮毛片无遮挡高清免费 | 乱码午夜-极国产极内射 | 日日碰狠狠躁久久躁蜜桃 | 国产美女精品一区二区三区 | 四虎永久在线精品免费网址 | 网友自拍区视频精品 | 亚洲中文字幕在线观看 | 99精品国产综合久久久久五月天 | 成年女人永久免费看片 | 久久久www成人免费毛片 | 精品一区二区三区波多野结衣 | 国产国语老龄妇女a片 | 国产亚洲精品久久久闺蜜 | 免费人成网站视频在线观看 | 久久亚洲中文字幕无码 | 少妇性l交大片欧洲热妇乱xxx | 沈阳熟女露脸对白视频 | 精品国产一区二区三区四区在线看 | 国产另类ts人妖一区二区 | 国产精品亚洲五月天高清 | 日韩成人一区二区三区在线观看 | 欧美老妇交乱视频在线观看 | 特黄特色大片免费播放器图片 | 亚洲精品一区二区三区大桥未久 | 在教室伦流澡到高潮hnp视频 | www国产亚洲精品久久久日本 | 欧美黑人乱大交 | 成在人线av无码免费 | 成人精品天堂一区二区三区 | 日本一区二区三区免费播放 | 日日橹狠狠爱欧美视频 | 一本久道久久综合婷婷五月 | 暴力强奷在线播放无码 | 亚洲熟悉妇女xxx妇女av | 男女爱爱好爽视频免费看 | 午夜精品久久久内射近拍高清 | 国产亚洲人成a在线v网站 | 最新版天堂资源中文官网 | 自拍偷自拍亚洲精品被多人伦好爽 | 人妻中文无码久热丝袜 | 亚洲国产成人av在线观看 | 老头边吃奶边弄进去呻吟 | 人人超人人超碰超国产 | 精品成在人线av无码免费看 | 蜜臀av在线观看 在线欧美精品一区二区三区 | 亚洲精品一区二区三区四区五区 | 欧美高清在线精品一区 | 国产偷国产偷精品高清尤物 | 国产精品久久福利网站 | 久热国产vs视频在线观看 | 国产人妻精品一区二区三区 | 国产亚洲精品精品国产亚洲综合 | 中文字幕乱码人妻无码久久 | 国产成人一区二区三区在线观看 | 久久99热只有频精品8 | 国产日产欧产精品精品app | 久久久久成人精品免费播放动漫 | 国产suv精品一区二区五 | 77777熟女视频在线观看 а天堂中文在线官网 | 无码av最新清无码专区吞精 | 少妇无码av无码专区在线观看 | 97久久超碰中文字幕 | 色五月五月丁香亚洲综合网 | 亚洲va欧美va天堂v国产综合 | 无遮无挡爽爽免费视频 | 国产午夜精品一区二区三区嫩草 | 夜夜夜高潮夜夜爽夜夜爰爰 | 中国女人内谢69xxxx | 狠狠噜狠狠狠狠丁香五月 | 午夜精品久久久久久久久 | 精品无码国产一区二区三区av | 国产精品久久久久7777 | 久久精品中文字幕一区 | 久久精品女人的天堂av | 久久综合九色综合97网 | 亚洲经典千人经典日产 | 亚洲精品一区二区三区婷婷月 | 131美女爱做视频 | 丰满人妻一区二区三区免费视频 | 久久亚洲精品中文字幕无男同 | 亚洲精品中文字幕乱码 | 国产乱人伦app精品久久 国产在线无码精品电影网 国产国产精品人在线视 | 大地资源中文第3页 | 未满成年国产在线观看 | 99久久人妻精品免费二区 | 亚洲日韩一区二区三区 | 麻豆果冻传媒2021精品传媒一区下载 | а√资源新版在线天堂 | 国产成人精品一区二区在线小狼 | 强伦人妻一区二区三区视频18 | 亚洲大尺度无码无码专区 | 国产麻豆精品一区二区三区v视界 | 牲欲强的熟妇农村老妇女视频 | 7777奇米四色成人眼影 | 久久国产精品_国产精品 | 日日天日日夜日日摸 | 日本精品久久久久中文字幕 | 人人妻人人澡人人爽欧美一区九九 | 久久aⅴ免费观看 | 日本精品久久久久中文字幕 | 久久精品国产精品国产精品污 | 日韩精品一区二区av在线 | 久久精品丝袜高跟鞋 | 国产精品久久久一区二区三区 | 无码精品国产va在线观看dvd | 樱花草在线播放免费中文 | 又大又硬又爽免费视频 | 亚洲中文字幕av在天堂 | 一本色道婷婷久久欧美 | 在线视频网站www色 | 亚拍精品一区二区三区探花 | 特黄特色大片免费播放器图片 | 久青草影院在线观看国产 | 国产亚洲美女精品久久久2020 | 男女性色大片免费网站 | 成人无码影片精品久久久 | 久久综合给合久久狠狠狠97色 | 成人无码影片精品久久久 | 亚洲国产成人av在线观看 | 人妻少妇被猛烈进入中文字幕 | 久久国产自偷自偷免费一区调 | 亚洲国产精品美女久久久久 | 无码精品国产va在线观看dvd | 亚洲熟妇自偷自拍另类 | 久久精品成人欧美大片 | 秋霞成人午夜鲁丝一区二区三区 | 香蕉久久久久久av成人 | 久久综合久久自在自线精品自 | 婷婷丁香六月激情综合啪 | 国产精品人妻一区二区三区四 | 精品乱码久久久久久久 | 天堂а√在线地址中文在线 | 国产成人精品久久亚洲高清不卡 | 欧美色就是色 | 少妇邻居内射在线 | 国产精品99爱免费视频 | 中文字幕人妻丝袜二区 | 免费人成在线观看网站 | 欧美日韩亚洲国产精品 | 国精品人妻无码一区二区三区蜜柚 | 无遮挡啪啪摇乳动态图 | 国产国产精品人在线视 | 亚洲の无码国产の无码步美 | 一个人免费观看的www视频 | 国产尤物精品视频 | 又大又黄又粗又爽的免费视频 | 1000部夫妻午夜免费 | 久久成人a毛片免费观看网站 | 激情爆乳一区二区三区 | 欧美怡红院免费全部视频 | 人人超人人超碰超国产 | 国产精品美女久久久网av | 蜜臀av无码人妻精品 | 少妇性俱乐部纵欲狂欢电影 | 亚洲熟妇色xxxxx欧美老妇y | 夜精品a片一区二区三区无码白浆 | 色婷婷综合中文久久一本 | 99久久精品日本一区二区免费 | 无码人妻久久一区二区三区不卡 | 久久午夜无码鲁丝片秋霞 | 欧美阿v高清资源不卡在线播放 | 一本色道久久综合亚洲精品不卡 | 国产精品免费大片 | 亚洲精品www久久久 | 老熟妇仑乱视频一区二区 | 波多野结衣av在线观看 | 亚洲日本一区二区三区在线 | 亚洲色大成网站www | 九月婷婷人人澡人人添人人爽 | 亚洲国产精华液网站w | 任你躁国产自任一区二区三区 | 日本www一道久久久免费榴莲 | 伊人久久大香线蕉午夜 | 亚洲精品一区二区三区在线 | 无码人妻精品一区二区三区不卡 | 久久久亚洲欧洲日产国码αv | 无码帝国www无码专区色综合 | 亚洲精品成人av在线 | a片免费视频在线观看 | 九月婷婷人人澡人人添人人爽 | 日本一区二区更新不卡 | 又粗又大又硬又长又爽 | 亚洲精品一区二区三区大桥未久 | 国产精品99久久精品爆乳 | 狠狠色噜噜狠狠狠7777奇米 | 东京热一精品无码av | 人妻互换免费中文字幕 | av在线亚洲欧洲日产一区二区 | 水蜜桃av无码 | 丰满妇女强制高潮18xxxx | 少妇人妻偷人精品无码视频 | 国产精品亚洲а∨无码播放麻豆 | 国产美女极度色诱视频www | 波多野42部无码喷潮在线 | 国产熟女一区二区三区四区五区 | 国产人妻人伦精品 | 麻豆果冻传媒2021精品传媒一区下载 | 日韩精品乱码av一区二区 | 好男人社区资源 | 免费网站看v片在线18禁无码 | 成人无码影片精品久久久 | 国产97在线 | 亚洲 | 99久久人妻精品免费一区 | 3d动漫精品啪啪一区二区中 | 色偷偷人人澡人人爽人人模 | 免费观看的无遮挡av | 蜜桃视频韩日免费播放 | 巨爆乳无码视频在线观看 | 无码人妻出轨黑人中文字幕 | 狠狠噜狠狠狠狠丁香五月 | 激情内射日本一区二区三区 | 中文字幕无码视频专区 | 欧美性黑人极品hd | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 精品乱码久久久久久久 | 色综合久久网 | 又紧又大又爽精品一区二区 | 爆乳一区二区三区无码 | 日本va欧美va欧美va精品 | 性欧美熟妇videofreesex | 网友自拍区视频精品 | 国产香蕉尹人综合在线观看 | 高潮毛片无遮挡高清免费 | 啦啦啦www在线观看免费视频 | 亚洲一区二区三区无码久久 | 亚洲人成影院在线无码按摩店 | 亚洲精品久久久久久久久久久 | 国产精品美女久久久久av爽李琼 | 欧美丰满老熟妇xxxxx性 | 夫妻免费无码v看片 | 久久熟妇人妻午夜寂寞影院 | 亚洲熟妇色xxxxx亚洲 | 色欲av亚洲一区无码少妇 | 色综合久久网 | 午夜精品久久久内射近拍高清 | 精品熟女少妇av免费观看 | 狂野欧美性猛xxxx乱大交 | 国产成人亚洲综合无码 | 亚洲日韩av一区二区三区四区 | 久久久久久a亚洲欧洲av冫 | 亚洲第一无码av无码专区 | av人摸人人人澡人人超碰下载 | 久久亚洲中文字幕精品一区 | 免费男性肉肉影院 | 亚洲欧洲无卡二区视頻 | 双乳奶水饱满少妇呻吟 | 狠狠综合久久久久综合网 | 亚洲精品欧美二区三区中文字幕 | 玩弄少妇高潮ⅹxxxyw | 荫蒂被男人添的好舒服爽免费视频 | 亚洲色成人中文字幕网站 | 欧美乱妇无乱码大黄a片 | 亚洲精品综合五月久久小说 | 国产成人午夜福利在线播放 | 国产无套粉嫩白浆在线 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 牛和人交xxxx欧美 | 中文字幕无线码 | 香蕉久久久久久av成人 | 玩弄少妇高潮ⅹxxxyw | 欧美老妇交乱视频在线观看 | 国产成人无码av在线影院 | 欧美人与禽猛交狂配 | 九月婷婷人人澡人人添人人爽 | 日本乱偷人妻中文字幕 | 日本免费一区二区三区最新 | 人人超人人超碰超国产 | 欧美黑人乱大交 | 亚洲欧美精品伊人久久 | 桃花色综合影院 | 丰满诱人的人妻3 | 久久国内精品自在自线 | 天堂在线观看www | 国产精品香蕉在线观看 | 国产国产精品人在线视 | 国内精品人妻无码久久久影院蜜桃 | 水蜜桃色314在线观看 | 亚洲国产精华液网站w | 欧美精品国产综合久久 | 中文精品久久久久人妻不卡 | 久久 国产 尿 小便 嘘嘘 | 少妇无套内谢久久久久 | 中文字幕人妻无码一区二区三区 | 亚洲色欲久久久综合网东京热 | 国产午夜视频在线观看 | 荫蒂添的好舒服视频囗交 | 国产三级久久久精品麻豆三级 | 国产超碰人人爽人人做人人添 | 黑森林福利视频导航 | 无人区乱码一区二区三区 | 久久久久久九九精品久 | 日韩精品无码一本二本三本色 | 中文字幕日韩精品一区二区三区 | 中文精品久久久久人妻不卡 | 中文无码成人免费视频在线观看 | 亚洲一区二区三区在线观看网站 | 日韩欧美成人免费观看 | 亚洲精品中文字幕久久久久 | 国产精品久久福利网站 | 乱人伦人妻中文字幕无码 | 玩弄少妇高潮ⅹxxxyw | 三级4级全黄60分钟 | 两性色午夜视频免费播放 | 我要看www免费看插插视频 | 暴力强奷在线播放无码 | 精品久久综合1区2区3区激情 | 2019午夜福利不卡片在线 | 好爽又高潮了毛片免费下载 | 国产精品无码mv在线观看 | 一本色道久久综合狠狠躁 | 亚洲国产综合无码一区 | 爱做久久久久久 | 午夜理论片yy44880影院 | 国产av剧情md精品麻豆 | 亚洲欧美国产精品久久 | 久久99精品国产麻豆蜜芽 | 一个人免费观看的www视频 | 亚洲精品美女久久久久久久 | 久久亚洲日韩精品一区二区三区 | 学生妹亚洲一区二区 | 99久久久无码国产aaa精品 | 波多野结衣av一区二区全免费观看 | 中文精品久久久久人妻不卡 | 日韩少妇白浆无码系列 | 国产suv精品一区二区五 | 亚洲小说春色综合另类 | 正在播放老肥熟妇露脸 | 国内精品人妻无码久久久影院 | 无遮挡啪啪摇乳动态图 | 无码成人精品区在线观看 | 99久久精品日本一区二区免费 | 国内丰满熟女出轨videos | 色 综合 欧美 亚洲 国产 | 欧美熟妇另类久久久久久不卡 | 国产精品久久久久久久影院 | 人妻少妇精品久久 | 亚洲aⅴ无码成人网站国产app | 中文字幕无码av激情不卡 | 国产精品对白交换视频 | 欧美亚洲日韩国产人成在线播放 | 领导边摸边吃奶边做爽在线观看 | 亚洲日本一区二区三区在线 | 亚洲中文字幕无码中文字在线 | 日本精品人妻无码77777 天堂一区人妻无码 | 日本xxxx色视频在线观看免费 | 欧美变态另类xxxx | 18精品久久久无码午夜福利 | 巨爆乳无码视频在线观看 | 夜精品a片一区二区三区无码白浆 | 国产凸凹视频一区二区 | 欧美 丝袜 自拍 制服 另类 | 日日噜噜噜噜夜夜爽亚洲精品 | 亚洲色在线无码国产精品不卡 | 老熟女重囗味hdxx69 | 久久久国产一区二区三区 | 日韩成人一区二区三区在线观看 | 熟妇人妻无码xxx视频 | 欧美日本免费一区二区三区 | 亚洲中文字幕久久无码 | 精品偷自拍另类在线观看 | 欧美午夜特黄aaaaaa片 | 亚洲综合无码一区二区三区 | 东京热男人av天堂 | 国产美女精品一区二区三区 | 久久 国产 尿 小便 嘘嘘 | 国产精品18久久久久久麻辣 | 无码成人精品区在线观看 | 色婷婷香蕉在线一区二区 | 成 人 网 站国产免费观看 | 免费男性肉肉影院 | 欧美黑人巨大xxxxx | 色一情一乱一伦一区二区三欧美 | 久久精品中文闷骚内射 | 免费无码一区二区三区蜜桃大 | 亚洲色偷偷偷综合网 | 国产疯狂伦交大片 | 好男人社区资源 | 免费无码午夜福利片69 | 中文无码伦av中文字幕 | 无遮无挡爽爽免费视频 | 中文字幕人妻丝袜二区 | 美女张开腿让人桶 | 免费国产黄网站在线观看 | av在线亚洲欧洲日产一区二区 | 暴力强奷在线播放无码 | 大屁股大乳丰满人妻 | 精品国产一区二区三区av 性色 | 国内老熟妇对白xxxxhd | 久久国产精品二国产精品 | 国产精品欧美成人 | aa片在线观看视频在线播放 | 老熟妇仑乱视频一区二区 | 成人精品视频一区二区三区尤物 | 国内精品久久毛片一区二区 | 男人的天堂av网站 | 国产又粗又硬又大爽黄老大爷视 | 欧美国产亚洲日韩在线二区 | 熟妇人妻激情偷爽文 | 久久久亚洲欧洲日产国码αv | 天堂а√在线中文在线 | 十八禁真人啪啪免费网站 | 亚洲成a人片在线观看无码 | 玩弄人妻少妇500系列视频 | 白嫩日本少妇做爰 | 日本熟妇大屁股人妻 | 波多野结衣乳巨码无在线观看 | 国産精品久久久久久久 | 久久婷婷五月综合色国产香蕉 | 国产xxx69麻豆国语对白 | 内射老妇bbwx0c0ck | 国产亚洲tv在线观看 | 亚洲日韩av一区二区三区四区 | 国产av无码专区亚洲a∨毛片 | 伊在人天堂亚洲香蕉精品区 | av无码久久久久不卡免费网站 | 精品人人妻人人澡人人爽人人 | 丰满少妇弄高潮了www | 日韩av无码一区二区三区不卡 | 亚洲の无码国产の无码步美 | 国产精品毛片一区二区 | 久久久中文久久久无码 | 中文无码精品a∨在线观看不卡 | 中文字幕+乱码+中文字幕一区 | 亚洲熟妇自偷自拍另类 | 国产艳妇av在线观看果冻传媒 | 亚洲精品久久久久久久久久久 | 亚洲一区二区三区无码久久 | 亚洲欧美国产精品专区久久 | 极品尤物被啪到呻吟喷水 | 免费男性肉肉影院 | 久久久久国色av免费观看性色 | 99精品无人区乱码1区2区3区 | 国产无遮挡吃胸膜奶免费看 | 国产深夜福利视频在线 | 久久午夜夜伦鲁鲁片无码免费 | 久久亚洲精品中文字幕无男同 | 荫蒂添的好舒服视频囗交 | 亚洲乱码国产乱码精品精 | 色综合久久久无码网中文 | 一个人看的视频www在线 | 日本丰满熟妇videos | 久久久www成人免费毛片 | 特级做a爰片毛片免费69 | 99久久亚洲精品无码毛片 | 久久亚洲精品中文字幕无男同 | 在线 国产 欧美 亚洲 天堂 | 中文字幕 亚洲精品 第1页 | 激情内射亚州一区二区三区爱妻 | 欧美性生交xxxxx久久久 | 乱码av麻豆丝袜熟女系列 | 亚洲色欲色欲欲www在线 | 大肉大捧一进一出好爽视频 | 国产精品办公室沙发 | 亚洲男人av香蕉爽爽爽爽 | 色婷婷av一区二区三区之红樱桃 | 国产suv精品一区二区五 | 亚洲男人av天堂午夜在 | 狠狠噜狠狠狠狠丁香五月 | 国产欧美精品一区二区三区 | aⅴ在线视频男人的天堂 | 妺妺窝人体色www在线小说 | 久久天天躁狠狠躁夜夜免费观看 | 日韩av无码中文无码电影 | 在线а√天堂中文官网 | 日日摸夜夜摸狠狠摸婷婷 | 荫蒂添的好舒服视频囗交 | www国产亚洲精品久久网站 | 久久久久人妻一区精品色欧美 | 国产成人无码av在线影院 | 动漫av一区二区在线观看 | 人妻插b视频一区二区三区 | 天堂亚洲2017在线观看 | 国产人妻精品一区二区三区 | 国产亚洲欧美在线专区 | 女人色极品影院 | 丰满岳乱妇在线观看中字无码 | 亚洲日本va午夜在线电影 | 狠狠色欧美亚洲狠狠色www | 人妻少妇精品无码专区动漫 | 亚洲精品www久久久 | 天天摸天天碰天天添 | 无遮挡啪啪摇乳动态图 | 欧美 亚洲 国产 另类 | 精品无码一区二区三区爱欲 | 国产亚洲欧美日韩亚洲中文色 | 亚洲精品久久久久中文第一幕 | 国产极品视觉盛宴 | 国产福利视频一区二区 | 亚洲人亚洲人成电影网站色 | 亚洲国产av精品一区二区蜜芽 | 久久五月精品中文字幕 | 亚洲色欲久久久综合网东京热 | 国产偷国产偷精品高清尤物 | 国产农村妇女高潮大叫 | av在线亚洲欧洲日产一区二区 | 久久午夜夜伦鲁鲁片无码免费 | 久久综合色之久久综合 | 色窝窝无码一区二区三区色欲 | 强开小婷嫩苞又嫩又紧视频 | 亚洲精品鲁一鲁一区二区三区 | 亚洲熟熟妇xxxx | 天天av天天av天天透 | 亚洲欧美精品aaaaaa片 | 欧美日韩在线亚洲综合国产人 | 无码人妻黑人中文字幕 | 欧美精品国产综合久久 | 1000部啪啪未满十八勿入下载 | 2020最新国产自产精品 | 动漫av一区二区在线观看 | 乱码午夜-极国产极内射 | 天天av天天av天天透 | 久久精品国产大片免费观看 | 欧美精品国产综合久久 | 久久午夜无码鲁丝片秋霞 | 亚洲精品国偷拍自产在线观看蜜桃 | 无码人妻丰满熟妇区五十路百度 | 老熟妇乱子伦牲交视频 | 精品一区二区不卡无码av | 国产三级久久久精品麻豆三级 | 国产成人精品久久亚洲高清不卡 | 久久综合给合久久狠狠狠97色 | 欧美丰满少妇xxxx性 | 欧洲欧美人成视频在线 | 婷婷综合久久中文字幕蜜桃三电影 | 国产av一区二区三区最新精品 | 又大又硬又黄的免费视频 | 久久久久亚洲精品中文字幕 | 欧美日韩一区二区三区自拍 | 亚洲精品国偷拍自产在线麻豆 | 久久国产精品精品国产色婷婷 | 国产精品亚洲一区二区三区喷水 | 日日摸夜夜摸狠狠摸婷婷 | 双乳奶水饱满少妇呻吟 | 国产又爽又黄又刺激的视频 | 国产超碰人人爽人人做人人添 | 人妻有码中文字幕在线 | 秋霞成人午夜鲁丝一区二区三区 | 自拍偷自拍亚洲精品10p | 亚洲一区二区三区无码久久 | 精品 日韩 国产 欧美 视频 | 午夜精品久久久久久久久 | 亚洲精品美女久久久久久久 | 欧洲美熟女乱又伦 | 成人免费视频视频在线观看 免费 | 亚洲熟悉妇女xxx妇女av | 亚洲人成人无码网www国产 | 97精品国产97久久久久久免费 | 亚洲国产欧美国产综合一区 | 国产精品美女久久久久av爽李琼 | 国内丰满熟女出轨videos | 青青草原综合久久大伊人精品 | 亚洲一区二区三区香蕉 | 波多野结衣一区二区三区av免费 | 偷窥日本少妇撒尿chinese | 99国产精品白浆在线观看免费 | 无码国模国产在线观看 | 日本护士xxxxhd少妇 | 两性色午夜视频免费播放 | 欧美三级a做爰在线观看 | 无码国产乱人伦偷精品视频 | 日韩人妻无码一区二区三区久久99 | 午夜精品一区二区三区在线观看 | 大肉大捧一进一出视频出来呀 | 爆乳一区二区三区无码 | 天堂无码人妻精品一区二区三区 | 欧美人妻一区二区三区 | 未满成年国产在线观看 | 强奷人妻日本中文字幕 | 扒开双腿疯狂进出爽爽爽视频 | 亚洲 a v无 码免 费 成 人 a v | 国产做国产爱免费视频 | 国产在线精品一区二区三区直播 | 欧美丰满熟妇xxxx | 国产精品久久国产三级国 | 欧美亚洲日韩国产人成在线播放 | 久久久久久久人妻无码中文字幕爆 | 日本一卡二卡不卡视频查询 | 国产精品福利视频导航 | 蜜桃视频韩日免费播放 | 国内揄拍国内精品少妇国语 | 国产成人精品久久亚洲高清不卡 | 无遮无挡爽爽免费视频 | 夜精品a片一区二区三区无码白浆 | 日本大乳高潮视频在线观看 | 巨爆乳无码视频在线观看 | 成熟妇人a片免费看网站 | 精品 日韩 国产 欧美 视频 | 中文字幕乱码中文乱码51精品 | 国产亚洲美女精品久久久2020 | 台湾无码一区二区 | 漂亮人妻洗澡被公强 日日躁 | 国产激情综合五月久久 | 国产农村乱对白刺激视频 | 性史性农村dvd毛片 | 久精品国产欧美亚洲色aⅴ大片 | 特黄特色大片免费播放器图片 | 综合网日日天干夜夜久久 | 精品国产成人一区二区三区 | 午夜精品久久久久久久久 | 国产人妻人伦精品1国产丝袜 | 欧美真人作爱免费视频 | 娇妻被黑人粗大高潮白浆 | 国产成人无码区免费内射一片色欲 | aⅴ亚洲 日韩 色 图网站 播放 | 亚洲精品成a人在线观看 | 99久久久无码国产精品免费 | 亚洲啪av永久无码精品放毛片 | ass日本丰满熟妇pics | 激情国产av做激情国产爱 | 亚洲自偷自偷在线制服 | 伊人久久大香线焦av综合影院 | 国内丰满熟女出轨videos | 荫蒂添的好舒服视频囗交 | 久久精品女人天堂av免费观看 | 一本久久伊人热热精品中文字幕 | 中文字幕人妻无码一区二区三区 | 精品欧美一区二区三区久久久 | 成人欧美一区二区三区黑人免费 | 亚洲中文字幕无码中字 | 女人和拘做爰正片视频 | 兔费看少妇性l交大片免费 | 国产va免费精品观看 | 亚洲国产精品毛片av不卡在线 | 国产精品无码久久av | 国产精品国产三级国产专播 | 午夜无码人妻av大片色欲 | 午夜无码人妻av大片色欲 | 日本乱偷人妻中文字幕 | 中文精品久久久久人妻不卡 | 大地资源网第二页免费观看 | 久精品国产欧美亚洲色aⅴ大片 | 亚洲精品中文字幕 | 曰韩少妇内射免费播放 | 在线播放免费人成毛片乱码 | 国产精品99久久精品爆乳 | 久久人人爽人人爽人人片ⅴ | 国产日产欧产精品精品app | 成人欧美一区二区三区黑人免费 | 国产三级久久久精品麻豆三级 | 宝宝好涨水快流出来免费视频 | 国产后入清纯学生妹 | 性生交大片免费看女人按摩摩 | 领导边摸边吃奶边做爽在线观看 | 国产成人亚洲综合无码 | 国产人妻精品一区二区三区 | 精品久久久久香蕉网 | 大地资源网第二页免费观看 | 色婷婷av一区二区三区之红樱桃 | 一本久久a久久精品亚洲 | 一个人看的视频www在线 | 亚洲熟妇色xxxxx欧美老妇 | 久久久久久亚洲精品a片成人 | 久久亚洲中文字幕精品一区 | 捆绑白丝粉色jk震动捧喷白浆 | 无码播放一区二区三区 | 国产精品丝袜黑色高跟鞋 | 亚洲乱码国产乱码精品精 | 国产欧美精品一区二区三区 | 兔费看少妇性l交大片免费 | 亚洲s色大片在线观看 | 国产精品无码一区二区三区不卡 | 99精品国产综合久久久久五月天 | 中文字幕无码视频专区 | 欧美国产亚洲日韩在线二区 | 国产精品人妻一区二区三区四 | 内射欧美老妇wbb | 澳门永久av免费网站 | 亚洲精品久久久久中文第一幕 | 少妇人妻偷人精品无码视频 | 好屌草这里只有精品 | 欧美人与物videos另类 | 精品国产一区二区三区四区在线看 | 国产成人精品久久亚洲高清不卡 | 老头边吃奶边弄进去呻吟 | 无码av岛国片在线播放 | 2020最新国产自产精品 | 亚洲第一无码av无码专区 | 国产三级精品三级男人的天堂 | 精品人妻人人做人人爽夜夜爽 | 十八禁视频网站在线观看 | 日韩在线不卡免费视频一区 | 精品熟女少妇av免费观看 | 亚洲自偷自拍另类第1页 | 人人妻人人澡人人爽精品欧美 | 300部国产真实乱 | 欧美性猛交xxxx富婆 | 国产电影无码午夜在线播放 | 精品欧美一区二区三区久久久 | 国产成人无码一二三区视频 | 精品久久久无码人妻字幂 | 欧美日韩一区二区免费视频 | 天堂一区人妻无码 | 亚洲成色在线综合网站 | 美女极度色诱视频国产 | 精品偷拍一区二区三区在线看 | 日本成熟视频免费视频 | 亚洲高清偷拍一区二区三区 | 亚洲国产精品无码久久久久高潮 | 无码人妻出轨黑人中文字幕 | 国产福利视频一区二区 | 欧美老妇交乱视频在线观看 | 色综合久久中文娱乐网 | a在线亚洲男人的天堂 | 美女黄网站人色视频免费国产 | 久久99精品国产麻豆蜜芽 | 天天燥日日燥 | 东京热男人av天堂 | 丝袜人妻一区二区三区 | 人人妻人人澡人人爽欧美精品 | 在线观看欧美一区二区三区 | 99riav国产精品视频 | 国产激情精品一区二区三区 | 中文字幕av日韩精品一区二区 | 国产9 9在线 | 中文 | 国产欧美精品一区二区三区 | 天海翼激烈高潮到腰振不止 | 色欲人妻aaaaaaa无码 | 精品 日韩 国产 欧美 视频 | 久久午夜夜伦鲁鲁片无码免费 | 无码精品人妻一区二区三区av | 一二三四在线观看免费视频 | 小鲜肉自慰网站xnxx | aa片在线观看视频在线播放 | 日本免费一区二区三区最新 | 国产麻豆精品一区二区三区v视界 | 国内精品久久久久久中文字幕 |