机器学习导论(张志华):主元分析
前言
這個筆記是北大那位老師課程的學習筆記,講的概念淺顯易懂,非常有利于我們掌握基本的概念,從而掌握相關的技術。
basic concepts
exp(?tz12)=∫exp(?tuz)dF(u)exp(-tz^{\frac{1}{2}}) =\int exp(-tuz) dF(u)exp(?tz21?)=∫exp(?tuz)dF(u)
z=∣∣x∣∣2z=||x||^2z=∣∣x∣∣2
exp(?t∣∣x∣∣),exp(?t∣∣x∣∣).exp(-t||x||),exp(-t||x||).exp(?t∣∣x∣∣),exp(?t∣∣x∣∣).
The product of P.D is P.D
eul distance transformed into another space to get the distance.
∣∣?(x)??(y)∣∣22||\phi(x)-\phi(y)||^2_2∣∣?(x)??(y)∣∣22?
Part2 unsuperrised learning
CB dimensionlity reduction.
PCA(Principal Component Analysis)
Population PCA
Def. if x ̄?Rpisarandomvector,withmean:uandcovariancematrixσ\overline x \subset R^p \quad is\quad a\quad random \quad vector, \quad with \quad mean:u \quad and \quad covariance \quad matrix \sigmax?Rpisarandomvector,withmean:uandcovariancematrixσ
then the PCA is
x ̄?>y ̄=Ut(x?u)\overline x-> \overline y=U^t(x-u)x?>y?=Ut(x?u)
when U is orthgonal.
Spectral Decompistion
Thm,
Ifx?>N(μ,σ)If x->N(\mu,\sigma)Ifx?>N(μ,σ) Then,yN(0,n)y~N(0,n)y?N(0,n)
(2)E(y0)=0,E(y_0)=0,E(y0?)=0,
(3)Cov(Ym,Yi)=0fori!=jCov(Y_m,Y_i)=0 for i !=j Cov(Ym?,Yi?)=0fori!=j
(4)yisaorthangonaltransformxisuncorrelationbutotsqure.y \quad is\quad a \quad orthangonal \quad transform \quad x \quad is \quad uncorrelation \quad but \quad ot \quad squre. yisaorthangonaltransformxisuncorrelationbutotsqure.
(5)Var(Yi)=σiVar(Y_i)=\sigma_iVar(Yi?)=σi?
Sample Principal Component
LetX=[x ̄1...x ̄n]Tbean?pLet X=[\overline x_1 ...\overline x_n]^T be\quad a \quad n*p LetX=[x1?...xn?]Tbean?p
sample data matrix
x ̄=1n∑x=1nx ̄i,\overline x=\frac{1}{n} \sum_{x=1}^n \overline x_i,x=n1?x=1∑n?xi?,
S=1nXTHXS=\frac{1}{n}X^THXS=n1?XTHX
H:In=1nInInH:I_n=\frac{1}{n}I_nI_nH:In?=n1?In?In?
reduce the data to k-dimension ,you get the first k element.
keep most information,PCA.suppos.
SVD
U=eigenvectorof(AAT)U=eigenvectorof(AA^T)U=eigenvectorof(AAT)
D=AATD=\sqrt{AA^T}D=AAT?
V=eigenvector(ATA)V=eigenvector(A^TA)V=eigenvector(ATA)
PCO(Principal Coordinate Analysis)
S=XTHXS=X^THXS=XTHX
power equal : HH=H
B=HXXTHB=HXX^THB=HXXTH
variance matrix
AB=BA
Non-zero eigenvector are equal.
總結
以上是生活随笔為你收集整理的机器学习导论(张志华):主元分析的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 命令行导出数据mysql数据库_MySQ
- 下一篇: OTA 触发