UCI机器学习数据集
鏈接:http://archive.ics.uci.edu/ml/datasets.php
機器學習系列教程
從隨機森林開始,一步步理解決策樹、隨機森林、ROC/AUC、數據集、交叉驗證的概念和實踐。
文字能說清的用文字、圖片能展示的用、描述不清的用公式、公式還不清楚的寫個簡單代碼,一步步理清各個環節和概念。
再到成熟代碼應用、模型調參、模型比較、模型評估,學習整個機器學習需要用到的知識和技能。
機器學習算法 - 隨機森林之決策樹初探(1)
機器學習算法-隨機森林之決策樹R 代碼從頭暴力實現(2)
機器學習算法-隨機森林之決策樹R 代碼從頭暴力實現(3)
機器學習算法-隨機森林之理論概述
隨機森林拖了這么久,終于到實戰了。先分享很多套用于機器學習的多種癌癥表達數據集 https://file.biolab.si/biolab/supp/bi-cancer/projections/。
機器學習算法-隨機森林初探(1)
機器學習 模型評估指標 - ROC曲線和AUC值
機器學習 - 訓練集、驗證集、測試集
機器學習 - 隨機森林手動10 折交叉驗證
一個函數統一238個機器學習R包,這也太贊了吧
基于Caret和RandomForest包進行隨機森林分析的一般步驟 (1)
Caret模型訓練和調參更多參數解讀(2)
機器學習相關書籍分享
基于Caret進行隨機森林隨機調參的4種方式
送你一個在線機器學習網站,真香!
總結
以上是生活随笔為你收集整理的UCI机器学习数据集的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 风湿病年鉴 | scRNA-seq研究揭
- 下一篇: 哇!单细胞测序-配体受体互作分析原来可以