python logger.debug_Python logger模块
1 logging模塊簡介
logging模塊是Python內置的標準模塊,主要用于輸出運行日志,可以設置輸出日志的等級、日志保存路徑、日志文件回滾等;相比print,具備如下優點:
可以通過設置不同的日志等級,在release版本中只輸出重要信息,而不必顯示大量的調試信息;
print將所有信息都輸出到標準輸出中,嚴重影響開發者從標準輸出中查看其它數據;logging則可以由開發者決定將信息輸出到什么地方,以及怎么輸出;
Logger從來不直接實例化,經常通過logging模塊級方法(Module-Level ?Function)logging.getLogger(name)來獲得,其中如果name不給定就用root。名字是以點號分割的命名方式命名的(a.b.c)。對同一個名字的多個調用logging.getLogger()方法會返回同一個logger對象。這種命名方式里面,后面的loggers是前面logger的子logger,自動繼承父loggers的log信息,正因為此,沒有必要把一個應用的所有logger都配置一遍,只要把頂層的logger配置好了,然后子logger根據需要繼承就行了。
logging.Logger對象扮演了三重角色:
首先,它暴露給應用幾個方法以便應用可以在運行時寫log.
其次,Logger對象按照log信息的嚴重程度或者根據filter對象來決定如何處理log信息(默認的過濾功能).
最后,logger還負責把log信息傳送給相關的handlers.
2 logging模塊使用
2.1 基本使用
配置logging基本的設置,然后在控制臺輸出日志,
import logging
logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
logger.info("Start print log")
logger.debug("Do something")
logger.warning("Something maybe fail.")
logger.info("Finish")
運行時,控制臺輸出,
1 2016-10-09 19:11:19,434 - __main__ - INFO - Start printlog2 2016-10-09 19:11:19,434 - __main__ - WARNING -Something maybe fail.3 2016-10-09 19:11:19,434 - __main__ - INFO - Finish
logging中可以選擇很多消息級別,如:DEBUG,INFO,WARNING,ERROR,CRITICAL,通過賦予logger或者handler不同的級別,開發者就可以只輸出錯誤信息到特定的記錄文件,或者在調試時只記錄調試信息。
將logger的級別改為DEBUG,再觀察一下輸出結果
logging.basicConfig(level = logging.DEBUG,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
從輸出結果可以看到,輸出了debug的日志記錄
2016-10-09 19:12:08,289 - __main__ - INFO - Start print log
2016-10-09 19:12:08,289 - __main__ - DEBUG - Do something
2016-10-09 19:12:08,289 - __main__ - WARNING - Something maybe fail.
2016-10-09 19:12:08,289 - __main__ - INFO - Finish
logging.basicConfig函數各參數:
filename:指定日志文件名;
filemode:和file函數意義相同,指定日志文件的打開模式,'w'或者'a';
format:指定輸出的格式和內容,format可以輸出很多有用的信息,
datefmt:指定時間格式,同time.strftime();
level:設置日志級別,默認為logging.WARNNING;
stream:指定將日志的輸出流,可以指定輸出到sys.stderr,sys.stdout或者文件,默認輸出到sys.stderr,當stream和filename同時指定時,stream被忽略;
Formatters定義了Logger記錄的輸出格式。
定義了最終log信息的內容格式,應用可以直接實例化Foamatter類。信息格式字符串用%()s風格的字符串做替換。
屬性名稱
格式
說明
name
%(name)s
日志的名稱
asctime
%(asctime)s
可讀時間,默認格式‘2003-07-08 16:49:45,896’,逗號之后是毫秒
filename
%(filename)s
文件名,pathname的一部分
pathname
%(pathname)s
文件的全路徑名稱
funcName
%(funcName)s
調用日志多對應的方法名
levelname
%(levelname)s
日志的等級
levelno
%(levelno)s
數字化的日志等級
lineno
%(lineno)d
被記錄日志在源碼中的行數
module
%(module)s
模塊名
msecs
%(msecs)d
時間中的毫秒部分
process
%(process)d
進程的ID
processName
%(processName)s
進程的名稱
thread
%(thread)d
線程的ID
threadName
%(threadName)s
線程的名稱
relativeCreated
%(relativeCreated)d
日志被創建的相對時間,以毫秒為單位
2.2 將日志寫入到文件
2.2.1 將日志寫入到文件
設置logging,創建一個FileHandler,并對輸出消息的格式進行設置,將其添加到logger,然后將日志寫入到指定的文件中,
import logging
logger = logging.getLogger(__name__)
logger.setLevel(level = logging.INFO)
handler = logging.FileHandler("log.txt")
handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.info("Start print log")
logger.debug("Do something")
logger.warning("Something maybe fail.")
logger.info("Finish")
log.txt中日志數據為:
2017-07-25 15:02:09,905 - __main__ - INFO - Start print log
2017-07-25 15:02:09,905 - __main__ - WARNING - Something maybe fail.
2017-07-25 15:02:09,905 - __main__ - INFO - Finish
2.2.2 將日志同時輸出到屏幕和日志文件
logger中添加StreamHandler,可以將日志輸出到屏幕上,
import logging
logger = logging.getLogger(__name__)
logger.setLevel(level = logging.INFO)
handler = logging.FileHandler("log.txt")
handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
console = logging.StreamHandler()
console.setLevel(logging.INFO)
logger.addHandler(handler)
logger.addHandler(console)
logger.info("Start print log")
logger.debug("Do something")
logger.warning("Something maybe fail.")
logger.info("Finish")
可以在log.txt文件和控制臺中看到
2017-07-25 15:03:05,075 - __main__ - INFO - Start print log
2017-07-25 15:03:05,075 - __main__ - WARNING - Something maybe fail.
2017-07-25 15:03:05,075 - __main__ - INFO - Finish
可以發現,logging有一個日志處理的主對象,其他處理方式都是通過addHandler添加進去,logging中包含的handler主要有如下幾種,
handler名稱:位置;作用
StreamHandler:logging.StreamHandler;日志輸出到流,可以是sys.stderr,sys.stdout或者文件
FileHandler:logging.FileHandler;日志輸出到文件
BaseRotatingHandler:logging.handlers.BaseRotatingHandler;基本的日志回滾方式
RotatingHandler:logging.handlers.RotatingHandler;日志回滾方式,支持日志文件最大數量和日志文件回滾
TimeRotatingHandler:logging.handlers.TimeRotatingHandler;日志回滾方式,在一定時間區域內回滾日志文件
SocketHandler:logging.handlers.SocketHandler;遠程輸出日志到TCP/IP sockets
DatagramHandler:logging.handlers.DatagramHandler;遠程輸出日志到UDP sockets
SMTPHandler:logging.handlers.SMTPHandler;遠程輸出日志到郵件地址
SysLogHandler:logging.handlers.SysLogHandler;日志輸出到syslog
NTEventLogHandler:logging.handlers.NTEventLogHandler;遠程輸出日志到Windows NT/2000/XP的事件日志
MemoryHandler:logging.handlers.MemoryHandler;日志輸出到內存中的指定buffer
HTTPHandler:logging.handlers.HTTPHandler;通過"GET"或者"POST"遠程輸出到HTTP服務器
2.2.3 日志回滾
使用RotatingFileHandler,可以實現日志回滾,
import logging
from logging.handlers import RotatingFileHandler
logger = logging.getLogger(__name__)
logger.setLevel(level = logging.INFO)
#定義一個RotatingFileHandler,最多備份3個日志文件,每個日志文件最大1K
rHandler = RotatingFileHandler("log.txt",maxBytes = 1*1024,backupCount = 3)
rHandler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
rHandler.setFormatter(formatter)
console = logging.StreamHandler()
console.setLevel(logging.INFO)
console.setFormatter(formatter)
logger.addHandler(rHandler)
logger.addHandler(console)
logger.info("Start print log")
logger.debug("Do something")
logger.warning("Something maybe fail.")
logger.info("Finish")
可以在工程目錄中看到,備份的日志文件,
.3 設置消息的等級
可以設置不同的日志等級,用于控制日志的輸出
日志等級:使用范圍
FATAL:致命錯誤
CRITICAL:特別糟糕的事情,如內存耗盡、磁盤空間為空,一般很少使用
ERROR:發生錯誤時,如IO操作失敗或者連接問題
WARNING:發生很重要的事件,但是并不是錯誤時,如用戶登錄密碼錯誤
INFO:處理請求或者狀態變化等日常事務
DEBUG:調試過程中使用DEBUG等級,如算法中每個循環的中間狀態
setLevel(lvl) ??? ?定義處理log的最低等級,內建的級別為:DEBUG,INFO,WARNING,ERROR,CRITICAL;下圖是級別對應數值
2.4 捕獲traceback
Python中的traceback模塊被用于跟蹤異常返回信息,可以在logging中記錄下traceback
import logging
logger = logging.getLogger(__name__)
logger.setLevel(level = logging.INFO)
handler = logging.FileHandler("log.txt")
handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
console = logging.StreamHandler()
console.setLevel(logging.INFO)
logger.addHandler(handler)
logger.addHandler(console)
logger.info("Start print log")
logger.debug("Do something")
logger.warning("Something maybe fail.")
try:
open("sklearn.txt","rb")
except (SystemExit,KeyboardInterrupt):
raise
except Exception:
logger.error("Faild to open sklearn.txt from logger.error",exc_info = True)
logger.info("Finish")
控制臺和日志文件log.txt中輸出
1 2017-07-25 15:04:24,045 - __main__ - INFO - Start printlog2 2017-07-25 15:04:24,045 - __main__ - WARNING -Something maybe fail.3 2017-07-25 15:04:24,046 - __main__ - ERROR - Faild to open sklearn.txt fromlogger.error4 Traceback (most recent call last):5 File "E:\PYTHON\Eclipse\eclipse\Doc\14day5\Logger模塊\Logging.py", line 71, in
6 open("sklearn.txt","rb")7 IOError: [Errno 2] No such file or directory: 'sklearn.txt'
8 2017-07-25 15:04:24,049 - __main__ - INFO - Finish
View Code
也可以使用logger.exception(msg,_args),它等價于logger.error(msg,exc_info = True,_args),
將
logger.error("Faild to open sklearn.txt from logger.error",exc_info = True)
替換為,
logger.exception("Failed to open sklearn.txt from logger.exception")
2.5 多模塊使用logging
主模塊mainModule.py
import logging
import subModule
logger = logging.getLogger("mainModule")
logger.setLevel(level = logging.INFO)
handler = logging.FileHandler("log.txt")
handler.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
console = logging.StreamHandler()
console.setLevel(logging.INFO)
console.setFormatter(formatter)
logger.addHandler(handler)
logger.addHandler(console)
logger.info("creating an instance of subModule.subModuleClass")
a = subModule.SubModuleClass()
logger.info("calling subModule.subModuleClass.doSomething")
a.doSomething()
logger.info("done with subModule.subModuleClass.doSomething")
logger.info("calling subModule.some_function")
subModule.som_function()
logger.info("done with subModule.some_function")
子模塊subModule.py
import logging
module_logger = logging.getLogger("mainModule.sub")
class SubModuleClass(object):
def __init__(self):
self.logger = logging.getLogger("mainModule.sub.module")
self.logger.info("creating an instance in SubModuleClass")
def doSomething(self):
self.logger.info("do something in SubModule")
a = []
a.append(1)
self.logger.debug("list a = " + str(a))
self.logger.info("finish something in SubModuleClass")
def som_function():
module_logger.info("call function some_function")
執行之后,在控制和日志文件log.txt中輸出
1 2017-07-25 15:05:07,427 - mainModule - INFO -creating an instance of subModule.subModuleClass2 2017-07-25 15:05:07,427 - mainModule.sub.module - INFO - creating an instance inSubModuleClass3 2017-07-25 15:05:07,427 - mainModule - INFO -calling subModule.subModuleClass.doSomething4 2017-07-25 15:05:07,427 - mainModule.sub.module - INFO - do something inSubModule5 2017-07-25 15:05:07,427 - mainModule.sub.module - INFO - finish something inSubModuleClass6 2017-07-25 15:05:07,427 - mainModule - INFO -done with subModule.subModuleClass.doSomething7 2017-07-25 15:05:07,427 - mainModule - INFO -calling subModule.some_function8 2017-07-25 15:05:07,427 - mainModule.sub - INFO -call function some_function9 2017-07-25 15:05:07,428 - mainModule - INFO - done with subModule.some_function
View Code
說明:
首先在主模塊定義了logger'mainModule',并對它進行了配置,就可以在解釋器進程里面的其他地方通過getLogger('mainModule')得到的對象都是一樣的,不需要重新配置,可以直接使用。定義的該logger的子logger,都可以共享父logger的定義和配置,所謂的父子logger是通過命名來識別,任意以'mainModule'開頭的logger都是它的子logger,例如'mainModule.sub'。
實際開發一個application,首先可以通過logging配置文件編寫好這個application所對應的配置,可以生成一個根logger,如'PythonAPP',然后在主函數中通過fileConfig加載logging配置,接著在application的其他地方、不同的模塊中,可以使用根logger的子logger,如'PythonAPP.Core','PythonAPP.Web'來進行log,而不需要反復的定義和配置各個模塊的logger。
3 通過JSON或者YAML文件配置logging模塊
盡管可以在Python代碼中配置logging,但是這樣并不夠靈活,最好的方法是使用一個配置文件來配置。在Python 2.7及以后的版本中,可以從字典中加載logging配置,也就意味著可以通過JSON或者YAML文件加載日志的配置。
3.1 通過JSON文件配置
JSON配置文件
{
"version":1,
"disable_existing_loggers":false,
"formatters":{
"simple":{
"format":"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
}
},
"handlers":{
"console":{
"class":"logging.StreamHandler",
"level":"DEBUG",
"formatter":"simple",
"stream":"ext://sys.stdout"
},
"info_file_handler":{
"class":"logging.handlers.RotatingFileHandler",
"level":"INFO",
"formatter":"simple",
"filename":"info.log",
"maxBytes":"10485760",
"backupCount":20,
"encoding":"utf8"
},
"error_file_handler":{
"class":"logging.handlers.RotatingFileHandler",
"level":"ERROR",
"formatter":"simple",
"filename":"errors.log",
"maxBytes":10485760,
"backupCount":20,
"encoding":"utf8"
}
},
"loggers":{
"my_module":{
"level":"ERROR",
"handlers":["info_file_handler"],
"propagate":"no"
}
},
"root":{
"level":"INFO",
"handlers":["console","info_file_handler","error_file_handler"]
}
}
通過JSON加載配置文件,然后通過logging.dictConfig配置logging,
import json
import logging.config
import os
def setup_logging(default_path = "logging.json",default_level = logging.INFO,env_key = "LOG_CFG"):
path = default_path
value = os.getenv(env_key,None)
if value:
path = value
if os.path.exists(path):
with open(path,"r") as f:
config = json.load(f)
logging.config.dictConfig(config)
else:
logging.basicConfig(level = default_level)
def func():
logging.info("start func")
logging.info("exec func")
logging.info("end func")
if __name__ == "__main__":
setup_logging(default_path = "logging.json")
func()
3.2 通過YAML文件配置
通過YAML文件進行配置,比JSON看起來更加簡介明了,
version: 1
disable_existing_loggers: False
formatters:
simple:
format: "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
handlers:
console:
class: logging.StreamHandler
level: DEBUG
formatter: simple
stream: ext://sys.stdout
info_file_handler:
class: logging.handlers.RotatingFileHandler
level: INFO
formatter: simple
filename: info.log
maxBytes: 10485760
backupCount: 20
encoding: utf8
error_file_handler:
class: logging.handlers.RotatingFileHandler
level: ERROR
formatter: simple
filename: errors.log
maxBytes: 10485760
backupCount: 20
encoding: utf8
loggers:
my_module:
level: ERROR
handlers: [info_file_handler]
propagate: no
root:
level: INFO
handlers: [console,info_file_handler,error_file_handler]
通過YAML加載配置文件,然后通過logging.dictConfig配置logging
import yaml
import logging.config
import os
def setup_logging(default_path = "logging.yaml",default_level = logging.INFO,env_key = "LOG_CFG"):
path = default_path
value = os.getenv(env_key,None)
if value:
path = value
if os.path.exists(path):
with open(path,"r") as f:
config = yaml.load(f)
logging.config.dictConfig(config)
else:
logging.basicConfig(level = default_level)
def func():
logging.info("start func")
logging.info("exec func")
logging.info("end func")
if __name__ == "__main__":
setup_logging(default_path = "logging.yaml")
func()
4 Reference
總結
以上是生活随笔為你收集整理的python logger.debug_Python logger模块的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 软件史上最伟大的十大程序员
- 下一篇: 如何使用python爬取百度图片_【Py