关于h5py的使用及数据封装实例
生活随笔
收集整理的這篇文章主要介紹了
关于h5py的使用及数据封装实例
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
1. h5py簡單介紹
h5py文件是存放兩類對象的容器,數據集(dataset)和組(group),dataset類似數組類的數據集合,和numpy的數組差不多。group是像文件夾一樣的容器,它好比python中的字典,有鍵(key)和值(value)。group中可以存放dataset或者其他的group。”鍵”就是組成員的名稱,”值”就是組成員對象本身(組或者數據集),下面來看下如何創建組和數據集。
1.1 創建一個h5py文件
import h5py #要是讀取文件的話,就把w換成r f=h5py.File("myh5py.hdf5","w")在當前目錄下會生成一個myh5py.hdf5文件。
2. 創建dataset數據集
2. hpf5用于封裝訓練集和測試集
#============================================================ # This prepare the hdf5 datasets of the DRIVE database #============================================================import os import h5py import numpy as np from PIL import Imagedef write_hdf5(arr,outfile):with h5py.File(outfile,"w") as f:f.create_dataset("image", data=arr, dtype=arr.dtype)#------------Path of the images -------------------------------------------------------------- #train original_imgs_train = "./DRIVE/training/images/" groundTruth_imgs_train = "./DRIVE/training/1st_manual/" borderMasks_imgs_train = "./DRIVE/training/mask/" #test original_imgs_test = "./DRIVE/test/images/" groundTruth_imgs_test = "./DRIVE/test/1st_manual/" borderMasks_imgs_test = "./DRIVE/test/mask/" #---------------------------------------------------------------------------------------------Nimgs = 20 channels = 3 height = 584 width = 565 dataset_path = "./DRIVE_datasets_training_testing/"def get_datasets(imgs_dir,groundTruth_dir,borderMasks_dir,train_test="null"):imgs = np.empty((Nimgs,height,width,channels))groundTruth = np.empty((Nimgs,height,width))border_masks = np.empty((Nimgs,height,width))for path, subdirs, files in os.walk(imgs_dir): #list all files, directories in the pathfor i in range(len(files)):#originalprint "original image: " +files[i]img = Image.open(imgs_dir+files[i])imgs[i] = np.asarray(img)#corresponding ground truthgroundTruth_name = files[i][0:2] + "_manual1.gif"print "ground truth name: " + groundTruth_nameg_truth = Image.open(groundTruth_dir + groundTruth_name)groundTruth[i] = np.asarray(g_truth)#corresponding border masksborder_masks_name = ""if train_test=="train":border_masks_name = files[i][0:2] + "_training_mask.gif"elif train_test=="test":border_masks_name = files[i][0:2] + "_test_mask.gif"else:print "specify if train or test!!"exit()print "border masks name: " + border_masks_nameb_mask = Image.open(borderMasks_dir + border_masks_name)border_masks[i] = np.asarray(b_mask)print "imgs max: " +str(np.max(imgs))print "imgs min: " +str(np.min(imgs))assert(np.max(groundTruth)==255 and np.max(border_masks)==255)assert(np.min(groundTruth)==0 and np.min(border_masks)==0)print "ground truth and border masks are correctly withih pixel value range 0-255 (black-white)"#reshaping for my standard tensorsimgs = np.transpose(imgs,(0,3,1,2))assert(imgs.shape == (Nimgs,channels,height,width))groundTruth = np.reshape(groundTruth,(Nimgs,1,height,width))border_masks = np.reshape(border_masks,(Nimgs,1,height,width))assert(groundTruth.shape == (Nimgs,1,height,width))assert(border_masks.shape == (Nimgs,1,height,width))return imgs, groundTruth, border_masksif not os.path.exists(dataset_path):os.makedirs(dataset_path) #getting the training datasets imgs_train, groundTruth_train, border_masks_train = get_datasets(original_imgs_train,groundTruth_imgs_train,borderMasks_imgs_train,"train") print "saving train datasets" write_hdf5(imgs_train, dataset_path + "DRIVE_dataset_imgs_train.hdf5") write_hdf5(groundTruth_train, dataset_path + "DRIVE_dataset_groundTruth_train.hdf5") write_hdf5(border_masks_train,dataset_path + "DRIVE_dataset_borderMasks_train.hdf5")#getting the testing datasets imgs_test, groundTruth_test, border_masks_test = get_datasets(original_imgs_test,groundTruth_imgs_test,borderMasks_imgs_test,"test") print "saving test datasets" write_hdf5(imgs_test,dataset_path + "DRIVE_dataset_imgs_test.hdf5") write_hdf5(groundTruth_test, dataset_path + "DRIVE_dataset_groundTruth_test.hdf5") write_hdf5(border_masks_test,dataset_path + "DRIVE_dataset_borderMasks_test.hdf5") 遍歷文件夾下的所有文件 os.walk( dir )for parent, dir_names, file_names in os.walk(parent_dir): for i in file_names: print file_name
- parent: 父路徑
- dir_names: 子文件夾
- file_names: 文件名
總結
以上是生活随笔為你收集整理的关于h5py的使用及数据封装实例的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 用汇编写系统服务程序
- 下一篇: Mutex example