POJ Area of Simple Polygons 扫描线
生活随笔
收集整理的這篇文章主要介紹了
POJ Area of Simple Polygons 扫描线
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
這個題lba等神犇說可以不用離散化,但是我就是要用。
題干:
DescriptionThere are N, 1 <= N <= 1,000 rectangles in the 2-D xy-plane. The four sides of a rectangle are horizontal or vertical line segments. Rectangles are defined by their lower-left and upper-right corner points. Each corner point is a pair of two nonnegative integers in the range of 0 through 50,000 indicating its x and y coordinates. Assume that the contour of their union is defi ned by a set S of segments. We can use a subset of S to construct simple polygon(s). Please report the total area of the polygon(s) constructed by the subset of S. The area should be as large as possible. In a 2-D xy-plane, a polygon is defined by a finite set of segments such that every segment extreme (or endpoint) is shared by exactly two edges and no subsets of edges has the same property. The segments are edges and their extremes are the vertices of the polygon. A polygon is simple if there is no pair of nonconsecutive edges sharing a point. Example: Consider the following three rectangles: rectangle 1: < (0, 0) (4, 4) >, rectangle 2: < (1, 1) (5, 2) >, rectangle 3: < (1, 1) (2, 5) >. The total area of all simple polygons constructed by these rectangles is 18. InputThe input consists of multiple test cases. A line of 4 -1's separates each test case. An extra line of 4 -1's marks the end of the input. In each test case, the rectangles are given one by one in a line. In each line for a rectangle, 4 non-negative integers are given. The first two are the x and y coordinates of the lower-left corner. The next two are the x and y coordinates of the upper-right corner. Output For each test case, output the total area of all simple polygons in a line. Sample Input 0 0 4 4 1 1 5 2 1 1 2 5 -1 -1 -1 -1 0 0 2 2 1 1 3 3 2 2 4 4 -1 -1 -1 -1 -1 -1 -1 -1 Sample Output 18 10代碼:
#include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #include<queue> #include<stack> #include<cmath> using namespace std; #define duke(i,a,n) for(int i = a;i <= n;i++) #define lv(i,a,n) for(int i = a;i >= n;i--) #define clean(a) memset(a,0,sizeof(a)) const int INF = 1 << 30; const int mod = 998244353; typedef double db; template <class T> void read(T &x) {char c;bool op = 0;while(c = getchar(), c < '0' || c > '9')if(c == '-') op = 1;x = c - '0';while(c = getchar(), c >= '0' && c <= '9'){x = x * 10 + c - '0';if(x > mod) x %= mod;}if(op) x = -x; } template <class T> void write(T x) {if(x < 0) putchar('-'), x = -x;if(x >= 10) write(x / 10);putchar('0' + x % 10); } struct node {int s,e,h,f; }p[100000]; int n,m,ans; int tree[500000],x[500000]; int c[500000]; void init() {n = m = ans = 0;clean(tree);clean(p);clean(c);x[0] = -1; } bool cmp(node a,node b) {return a.h < b.h; }void push_up(int o,int l,int r) {// printf("@%d %d\n",l,r);if(c[o] != 0) tree[o] = x[r+1] - x[l];else if(l == r) tree[o] = 0;else tree[o] = tree[o << 1] + tree[o << 1 | 1]; }void update(int o,int l,int r,int x,int y,int w) {if(l == x && r == y) c[o] += w;else{int mid = (l + r) >> 1;if(y <= mid) update(o << 1,l,mid,x,y,w);else if(x > mid) update(o << 1 | 1,mid + 1,r,x,y,w);else update(o << 1,l,mid,x,mid,w),update(o << 1 | 1,mid + 1,r,mid + 1,y,w);}push_up(o,l,r); } int main() {int a,b,c,d;init();while(scanf("%d%d%d%d",&a,&b,&c,&d) != EOF){if(a < 0)break;while(a >= 0){p[++n].s = a;p[n].e = c;p[n].h = b;p[n].f = 1;x[n] = a;p[++n].s = a;p[n].e = c;p[n].h = d;p[n].f = -1;x[n] = c;read(a);read(b);read(c);read(d);}sort(x + 1,x + n + 1);m = unique(x + 1,x + n + 1) - x - 1;sort(p + 1,p + n + 1,cmp);duke(i,1,n-1){int l = lower_bound(x,x + m,p[i].s) - x;int r = lower_bound(x,x + m,p[i].e) - x - 1;update(1,1,m,l,r,p[i].f);ans += tree[1] * (p[i + 1].h - p[i].h);}printf("%d\n",ans);init();}return 0; }?
轉載于:https://www.cnblogs.com/DukeLv/p/9799249.html
總結
以上是生活随笔為你收集整理的POJ Area of Simple Polygons 扫描线的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 递归与栈的关系
- 下一篇: postgresql模糊匹配正则表达式性