【OpenCV 例程200篇】71. 连续函数的取样
【OpenCV 例程200篇】71. 連續(xù)函數(shù)的取樣
歡迎關(guān)注 『OpenCV 例程200篇』 系列,持續(xù)更新中
歡迎關(guān)注 『Python小白的OpenCV學(xué)習(xí)課』 系列,持續(xù)更新中
1.2 連續(xù)函數(shù)的取樣
連續(xù)函數(shù)必須經(jīng)過取樣和量化轉(zhuǎn)換為離散函數(shù),才能用計(jì)算機(jī)進(jìn)行處理。
考慮一個(gè)連續(xù)函數(shù) f(t)f(t)f(t),以自變量 t 的均勻間隔 ΔT\Delta TΔT 對(duì)函數(shù)取樣,取樣序列中的任意取樣值為:
fk=∫?∞+∞f(t)δ(t?kΔT)dt=f(kΔT)f_k = \int_{-\infty}^{+\infty} f(t) \delta (t-k \Delta T) dt = f(k \Delta T) fk?=∫?∞+∞?f(t)δ(t?kΔT)dt=f(kΔT)
取樣后的函數(shù)的傅里葉變換為:
F~(μ)=(F?S)(μ)=∫?∞+∞F(τ)S(μ?τ)dτ=1ΔT∑n=?∞∞F(μ?nΔT)\begin{aligned} \tilde{F}(\mu) &= (F \star S) (\mu) \\ &= \int_{-\infty}^{+\infty} F(\tau) S(\mu-\tau) d \tau\\ &= \frac{1}{\Delta T} \sum_{n=-\infty}^{\infty}F(\mu-\frac{n}{\Delta T}) \end{aligned} F~(μ)?=(F?S)(μ)=∫?∞+∞?F(τ)S(μ?τ)dτ=ΔT1?n=?∞∑∞?F(μ?ΔTn?)?
香農(nóng)(Shannon)取樣定理指出,對(duì)于一個(gè)連續(xù)信號(hào),用大于信號(hào)最高頻率 2倍的取樣率來取樣,則不會(huì)丟失信號(hào)的有效信息。
或者說,以 1/ΔT1/\Delta T1/ΔT 的取樣率對(duì)信號(hào)取樣點(diǎn)的的最大頻率是 μmax=1/2ΔT\mu_{max}=1/2\Delta Tμmax?=1/2ΔT 。
例程 8.4:連續(xù)函數(shù)的取樣
# 8.4:連續(xù)函數(shù)的取樣# 定義函數(shù),用于計(jì)算所有基矢的頻率def gen_freq(N, fs):k = np.arange(0, np.floor(N/2) + 1, 1)return (k * fs) / NT = 100# 定義多個(gè)不同頻率的基頻信號(hào)fk = [2/T, 5/T, 12/T] # 頻率A = [7, 3, 2] # 振幅phi = [np.pi, 2, 2*np.pi] # 初始相位n = np.arange(T)s0 = A[0] * np.sin(2 * np.pi * fk[0] * n + phi[0])s1 = A[1] * np.sin(2 * np.pi * fk[1] * n + phi[1])s2 = A[2] * np.sin(2 * np.pi * fk[2] * n + phi[2])s = s0 + s1 + s2 # 疊加生成混合信號(hào)g = np.fft.rfft(s) # 傅里葉變換plt.figure(figsize=(8, 6))plt.subplot(311)plt.plot(n, s0, n, s1, n, s2, ':', marker='+', alpha=0.5)plt.plot(n, s, 'r-', lw=2)plt.title("Sampling of continuous functions")plt.subplot(312)fs = 1 # 采樣間隔為 1freq = gen_freq(T, fs=fs) # 計(jì)算頻率序列ck = np.abs(g) / T # 計(jì)算振幅plt.plot(freq, ck, '.') # 頻率-振幅圖for f in fk:ck0 = round(ck[np.where(freq==f*fs)][0], 1)plt.annotate('$({},{})$'.format(f*fs, ck0), xy=(f*fs, ck0), xytext=(5, -10), textcoords='offset points')plt.subplot(313)fs = 10 # 采樣間隔為 10freq = gen_freq(T, fs=fs) # 計(jì)算頻率序列ck = np.abs(g) / T # 計(jì)算振幅plt.plot(freq, ck, '.') # 頻率-振幅圖for f in fk:ck0 = round(ck[np.where(freq==f*fs)][0], 1)plt.annotate('$({},{})$'.format(f*fs, ck0), xy=(f*fs, ck0), xytext=(5, -10), textcoords='offset points')plt.show()(本節(jié)完)
版權(quán)聲明:
youcans@xupt 原創(chuàng)作品,轉(zhuǎn)載必須標(biāo)注原文鏈接
Copyright 2021 youcans, XUPT
Crated:2022-1-15
歡迎關(guān)注 『OpenCV 例程200篇』 系列,持續(xù)更新中
歡迎關(guān)注 『Python小白的OpenCV學(xué)習(xí)課』 系列,持續(xù)更新中
【OpenCV 例程200篇】01. 圖像的讀取(cv2.imread)
【OpenCV 例程200篇】02. 圖像的保存(cv2.imwrite)
【OpenCV 例程200篇】03. 圖像的顯示(cv2.imshow)
【OpenCV 例程200篇】04. 用 matplotlib 顯示圖像(plt.imshow)
【OpenCV 例程200篇】05. 圖像的屬性(np.shape)
【OpenCV 例程200篇】06. 像素的編輯(img.itemset)
【OpenCV 例程200篇】07. 圖像的創(chuàng)建(np.zeros)
【OpenCV 例程200篇】08. 圖像的復(fù)制(np.copy)
【OpenCV 例程200篇】09. 圖像的裁剪(cv2.selectROI)
【OpenCV 例程200篇】10. 圖像的拼接(np.hstack)
【OpenCV 例程200篇】11. 圖像通道的拆分(cv2.split)
【OpenCV 例程200篇】12. 圖像通道的合并(cv2.merge)
【OpenCV 例程200篇】13. 圖像的加法運(yùn)算(cv2.add)
【OpenCV 例程200篇】14. 圖像與標(biāo)量相加(cv2.add)
【OpenCV 例程200篇】15. 圖像的加權(quán)加法(cv2.addWeight)
【OpenCV 例程200篇】16. 不同尺寸的圖像加法
【OpenCV 例程200篇】17. 兩張圖像的漸變切換
【OpenCV 例程200篇】18. 圖像的掩模加法
【OpenCV 例程200篇】19. 圖像的圓形遮罩
【OpenCV 例程200篇】20. 圖像的按位運(yùn)算
【OpenCV 例程200篇】21. 圖像的疊加
【OpenCV 例程200篇】22. 圖像添加非中文文字
【OpenCV 例程200篇】23. 圖像添加中文文字
【OpenCV 例程200篇】23. 圖像添加中文文字
【OpenCV 例程200篇】24. 圖像的仿射變換
【OpenCV 例程200篇】25. 圖像的平移
【OpenCV 例程200篇】26. 圖像的旋轉(zhuǎn)(以原點(diǎn)為中心)
【OpenCV 例程200篇】27. 圖像的旋轉(zhuǎn)(以任意點(diǎn)為中心)
【OpenCV 例程200篇】28. 圖像的旋轉(zhuǎn)(直角旋轉(zhuǎn))
【OpenCV 例程200篇】29. 圖像的翻轉(zhuǎn)(cv2.flip)
【OpenCV 例程200篇】30. 圖像的縮放(cv2.resize)
【OpenCV 例程200篇】31. 圖像金字塔(cv2.pyrDown)
【OpenCV 例程200篇】32. 圖像的扭變(錯(cuò)切)
【OpenCV 例程200篇】33. 圖像的復(fù)合變換
【OpenCV 例程200篇】34. 圖像的投影變換
【OpenCV 例程200篇】35. 圖像的投影變換(邊界填充)
【OpenCV 例程200篇】36. 直角坐標(biāo)與極坐標(biāo)的轉(zhuǎn)換
【OpenCV 例程200篇】37. 圖像的灰度化處理和二值化處理
【OpenCV 例程200篇】38. 圖像的反色變換(圖像反轉(zhuǎn))
【OpenCV 例程200篇】39. 圖像灰度的線性變換
【OpenCV 例程200篇】40. 圖像分段線性灰度變換
【OpenCV 例程200篇】41. 圖像的灰度變換(灰度級(jí)分層)
【OpenCV 例程200篇】42. 圖像的灰度變換(比特平面分層)
【OpenCV 例程200篇】43. 圖像的灰度變換(對(duì)數(shù)變換)
【OpenCV 例程200篇】44. 圖像的灰度變換(伽馬變換)
【OpenCV 例程200篇】45. 圖像的灰度直方圖
【OpenCV 例程200篇】46. 直方圖均衡化
【OpenCV 例程200篇】47. 圖像增強(qiáng)—直方圖匹配
【OpenCV 例程200篇】48. 圖像增強(qiáng)—彩色直方圖匹配
【OpenCV 例程200篇】49. 圖像增強(qiáng)—局部直方圖處理
【OpenCV 例程200篇】50. 圖像增強(qiáng)—直方圖統(tǒng)計(jì)量圖像增強(qiáng)
【OpenCV 例程200篇】51. 圖像增強(qiáng)—直方圖反向追蹤
【OpenCV 例程200篇】52. 圖像的相關(guān)與卷積運(yùn)算
【OpenCV 例程200篇】53. Scipy 實(shí)現(xiàn)圖像二維卷積
【OpenCV 例程200篇】54. OpenCV 實(shí)現(xiàn)圖像二維卷積
【OpenCV 例程200篇】55. 可分離卷積核
【OpenCV 例程200篇】56. 低通盒式濾波器
【OpenCV 例程200篇】57. 低通高斯濾波器
【OpenCV 例程200篇】58. 非線性濾波—中值濾波
【OpenCV 例程200篇】59. 非線性濾波—雙邊濾波
【OpenCV 例程200篇】60. 非線性濾波—聯(lián)合雙邊濾波
【OpenCV 例程200篇】61. 導(dǎo)向?yàn)V波(Guided filter)
【OpenCV 例程200篇】62. 圖像銳化——鈍化掩蔽
【OpenCV 例程200篇】63. 圖像銳化——Laplacian 算子
【OpenCV 例程200篇】64. 圖像銳化——Sobel 算子
【OpenCV 例程200篇】65. 圖像銳化——Scharr 算子
【OpenCV 例程200篇】66. 圖像濾波之低通/高通/帶阻/帶通
【OpenCV 例程200篇】67. 空間域圖像增強(qiáng)的綜合應(yīng)用
【OpenCV 例程200篇】68. 空間域圖像增強(qiáng)的綜合應(yīng)用
【OpenCV 例程200篇】69. 連續(xù)非周期信號(hào)的傅立葉系數(shù)
【OpenCV 例程200篇】70. 一維連續(xù)函數(shù)的傅里葉變換
【OpenCV 例程200篇】71. 連續(xù)函數(shù)的取樣
【OpenCV 例程200篇】72. 一維離散傅里葉變換
【OpenCV 例程200篇】73. 二維連續(xù)傅里葉變換
【OpenCV 例程200篇】74. 圖像的抗混疊
【OpenCV 例程200篇】75. Numpy 實(shí)現(xiàn)圖像傅里葉變換
【OpenCV 例程200篇】76. OpenCV 實(shí)現(xiàn)圖像傅里葉變換
【OpenCV 例程200篇】77. OpenCV 實(shí)現(xiàn)快速傅里葉變換
【OpenCV 例程200篇】78. 頻率域圖像濾波基礎(chǔ)
【OpenCV 例程200篇】79. 頻率域圖像濾波的基本步驟
【OpenCV 例程200篇】80. 頻率域圖像濾波詳細(xì)步驟
【OpenCV 例程200篇】81. 頻率域高斯低通濾波器
【OpenCV 例程200篇】82. 頻率域巴特沃斯低通濾波器
【OpenCV 例程200篇】83. 頻率域低通濾波:印刷文本字符修復(fù)
【OpenCV 例程200篇】84. 由低通濾波器得到高通濾波器
【OpenCV 例程200篇】85. 頻率域高通濾波器的應(yīng)用
【OpenCV 例程200篇】86. 頻率域?yàn)V波應(yīng)用:指紋圖像處理
【OpenCV 例程200篇】87. 頻率域鈍化掩蔽
【OpenCV 例程200篇】88. 頻率域拉普拉斯高通濾波
【OpenCV 例程200篇】89. 帶阻濾波器的傳遞函數(shù)
【OpenCV 例程200篇】90. 頻率域陷波濾波器
【OpenCV 例程200篇】91. 高斯噪聲、瑞利噪聲、愛爾蘭噪聲
【OpenCV 例程200篇】92. 指數(shù)噪聲、均勻噪聲、椒鹽噪聲
【OpenCV 例程200篇】93. 噪聲模型的直方圖
【OpenCV 例程200篇】94. 算術(shù)平均濾波器
【OpenCV 例程200篇】95. 幾何均值濾波器
【OpenCV 例程200篇】96. 諧波平均濾波器
【OpenCV 例程200篇】97. 反諧波平均濾波器
【OpenCV 例程200篇】98. 統(tǒng)計(jì)排序?yàn)V波器
【OpenCV 例程200篇】99. 修正阿爾法均值濾波器
【OpenCV 例程200篇】100. 自適應(yīng)局部降噪濾波器
總結(jié)
以上是生活随笔為你收集整理的【OpenCV 例程200篇】71. 连续函数的取样的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 【OpenCV 例程200篇】48. 图
- 下一篇: Python小白的数学建模课-07.选址