关于数学建模
一.數學模型的定義
現在數學模型還沒有一個統一的準確的定義,因為站在不同的角度可以有不同的定義。不過我們可以給出如下定義。"數學模型是關于部分現實世界和為一種特殊目的而作的一個抽象的、簡化的結構。"具體來說,數學模型就是為了某種目的,用字母、數學及其它數學符號建立起來的等式或不等式以及圖表、圖象、框圖等描述客觀事物的特征及其內在聯系的數學結構表達式。
二.建立數學模型的方法和步驟
第一、 模型準備
首先要了解問題的實際背景,明確建模目的,搜集必需的各種信息,盡量弄清對象的特征。
第二、 模型假設
根據對象的特征和建模目的,對問題進行必要的、合理的簡化,用精確的語言作出假設,是建模至關重要的一步。如果對問題的所有因素一概考慮,無疑是一種有勇氣但方法欠佳的行為,所以高超的建模者能充分發揮想象力、洞察力和判斷力,善于辨別主次,而且為了使處理方法簡單,應盡量使問題線性化、均勻化。
第三、 模型構成
根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量間的等式關系或其它數學結構。這時,我們便會進入一個廣闊的應用數學天地,這里在高數、概率老人的膝下,有許多可愛的孩子們,他們是圖論、排隊論、線性規劃、對策論等許多許多,真是泱泱大國,別有洞天。不過我們應當牢記,建立數學模型是為了讓更多的人明了并能加以應用,因此工具愈簡單愈有價值。
第四、模型求解
可以采用解方程、畫圖形、證明定理、邏輯運算、數值運算等各種傳統的和近代的數學方法,特別是計算機技術。一道實際問題的解決往往需要紛繁的計算,許多時候還得將系統運行情況用計算機模擬出來,因此編程和熟悉數學軟件包能力便舉足輕重。
第五、模型分析
對模型解答進行數學上的分析。“橫看成嶺側成峰,遠近高低各不同”。能否對模型結果作出細致精當的分析,決定了你的模型能否達到更高的檔次。還要記住,不論那種情況都需進行誤差分析,數據穩定性分析。
?
三: 數據模型分類
按模型的應用領域分類:
生物數學模型
醫學數學模型
地質數學模型
數量經濟學模型
數學社會學模型
按是否考慮隨機因素分類:
確定性模型
隨機性模型
按是否考慮模型的變化分類:
靜態模型
動態模型
按應用離散方法或連續方法分類:
離散模型
連續模型
按建立模型的數學方法分類:
幾何模型
微分方程模型
圖論模型
規劃論模型
馬氏鏈模型
?
按人們對是物發展過程的了解程度分類:
白箱模型:
指那些內部規律比較清楚的模型。如力學、熱學、電學以及相關的工程技術問題。
?
灰箱模型:
指那些內部規律尚不十分清楚,在建立和改善模型方面都還不同程度地有許多工作要做的問題。如氣象學、生態學經濟學等領域的模型。
?
黑箱模型:
指一些其內部規律還很少為人們所知的現象。如生命科學、社會科學等方面的問題。但由于因素眾多、關系復雜,也可簡化為灰箱模型來研究。
?
摘自數學建模愛好者
總結
- 上一篇: Google的价值观
- 下一篇: 对数学本质特征的若干认识