混沌(chaos)
混沌是指發(fā)生在確定性系統(tǒng)中的貌似隨機的不規(guī)則運動,一個確定性理論描述的系統(tǒng),其行為卻表現(xiàn)為不確定性--不可重復(fù)、不可預(yù)測,這就是混沌現(xiàn)象。進一步研究表明,混沌是非線性動力系統(tǒng)的固有特性,是非線性系統(tǒng)普遍存在的現(xiàn)象。牛頓確定性理論能夠充分處理的多為線性系統(tǒng),而線性系統(tǒng)大多是由非線性系統(tǒng)簡化來的。因此,在現(xiàn)實生活和實際工程技術(shù)問題中,混沌是無處不在的。
1972年12月29日,美國麻省理工學(xué)院教授、混沌學(xué)開創(chuàng)人之一E.N.洛倫茲在美國科學(xué)發(fā)展學(xué)會第139次會議上發(fā)表了題為《蝴蝶效應(yīng)》的論文,提出一個貌似荒謬的論斷:在巴西一只蝴蝶翅膀的拍打能在美國得克薩斯州產(chǎn)生一個龍卷風(fēng),并由此提出了天氣的不可準(zhǔn)確預(yù)報性。時至今日,這一論斷仍為人津津樂道,更重要的是,它激發(fā)了人們對混沌學(xué)的濃厚興趣。今天,伴隨計算機等技術(shù)的飛速進步,混沌學(xué)已發(fā)展成為一門影響深遠、發(fā)展迅速的前沿科學(xué)。
一般地,如果一個接近實際而沒有內(nèi)在隨機性的模型仍然具有貌似隨機的行為,就可以稱這個真實物理系統(tǒng)是混沌的。一個隨時間確定性變化或具有微弱隨機性的變化系統(tǒng),稱為動力系統(tǒng),它的狀態(tài)可由一個或幾個變量數(shù)值確定。而一些動力系統(tǒng)中,兩個幾乎完全一致的狀態(tài)經(jīng)過充分長時間后會變得毫無一致,恰如從長序列中隨機選取的兩個狀態(tài)那樣,這種系統(tǒng)被稱為敏感地依賴于初始條件。而對初始條件的敏感的依賴性也可作為混沌的一個定義。
與我們通常研究的線性科學(xué)不同,混沌學(xué)研究的是一種非線性科學(xué),而非線性科學(xué)研究似乎總是把人們對“正?!笔挛铩罢!爆F(xiàn)象的認(rèn)識轉(zhuǎn)向?qū)Α胺闯!笔挛铩胺闯!爆F(xiàn)象的探索。例如,孤波不是周期性振蕩的規(guī)則傳播;“多媒體”技術(shù)對信息貯存、壓縮、傳播、轉(zhuǎn)換和控制過程中遇到大量的“非常規(guī)”現(xiàn)象產(chǎn)生所采用的“非常規(guī)”的新方法;混沌打破了確定性方程由初始條件嚴(yán)格確定系統(tǒng)未來運動的“常規(guī)”,出現(xiàn)所謂各種“奇異吸引子”現(xiàn)象等。
混沌來自于非線性動力系統(tǒng),而動力系統(tǒng)又描述的是任意隨時間發(fā)展變化的過程,并且這樣的系統(tǒng)產(chǎn)生于生活的各個方面。舉個例子,生態(tài)學(xué)家對某物種的長期性態(tài)感興趣,給定一些觀察到的或?qū)嶒灥玫降淖兞?#xff08;如捕食者個數(shù)、氣候的惡劣性、食物的可獲性等等),建立數(shù)學(xué)模型來描述群體的增減。如果用Pn表示n代后該物種極限數(shù)目的百分比,則著名的“羅杰斯蒂映射”:Pn+1=kP(1-Pn)(其中k是依賴于生態(tài)條件的常數(shù),“n+1”是腳標(biāo))可以用于在給定Po,k條件下,預(yù)報群體數(shù)的長期性態(tài)。如果將常數(shù)k處理成可變的參數(shù)k,則當(dāng)k值增大到一定值后,“羅杰斯蒂映射”所構(gòu)成的動力系統(tǒng)就進入混沌狀態(tài)。最常見的氣象模型是巨型動力系統(tǒng)的一個例子:溫度、氣壓、風(fēng)向、速度以及降雨量都是這個系統(tǒng)中隨時間變化的變量。洛倫茲(E.N.Lorenz)教授于1963年《大氣科學(xué)》雜志上發(fā)表了“決定性的非周期流”一文,闡述了在氣候不能精確重演與長期天氣預(yù)報者無能為力之間必然存在著一種聯(lián)系,這就是非周期性與不可預(yù)見性之間的關(guān)系。洛倫茲在計算機上用他所建立的微分方程模擬氣候變化的時候,偶然發(fā)現(xiàn)輸入的初始條件的極細(xì)微的差別,可以引起模擬結(jié)果的巨大變化。洛倫茲打了個比喻,即我們在文首提到的關(guān)于在南半球巴西某地一只蝴蝶的翅膀的偶然扇動所引起的微小氣流,幾星期后可能變成席卷北半球美國得克薩斯州的一場龍卷風(fēng),這就是天氣的“蝴蝶效應(yīng)”。
混沌不是偶然的、個別的事件,而是普遍存在于宇宙間各種各樣的宏觀及微觀系統(tǒng)的,萬事萬物,莫不混沌?;煦缫膊皇仟毩⒋嬖诘目茖W(xué),它與其它各門科學(xué)互相促進、互相依靠,由此派生出許多交叉學(xué)科,如混沌氣象學(xué)、混沌經(jīng)濟學(xué)、混沌數(shù)學(xué)等。混沌學(xué)不僅極具研究價值,而且有現(xiàn)實應(yīng)用價值,能直接或間接創(chuàng)造財富。
混沌(Chaos)也作混沌,指確定性系統(tǒng)產(chǎn)生的一種對初始條件具有敏感依賴性的回復(fù)性非周期運動。渾沌與分形(fractal)和孤子(soliton)是非線性科學(xué)中最重要的三個概念。渾沌理論隸屬于非線性科學(xué),只有非線性系統(tǒng)才能產(chǎn)生渾沌運動。據(jù)1991年出版的《渾沌文獻總目》統(tǒng)計,已收集到與渾沌研究有直接關(guān)系的書269部、論文7157篇。到1996年底,還不斷有新的渾沌研究成果發(fā)表??茖W(xué)史上只有量子力學(xué)的攻堅熱情可與之媲美。
現(xiàn)代科學(xué)所講的混沌,其基本含義可以概括為:聚散有法,周行而不殆,回復(fù)而不閉。意思是說混沌軌道的運動完全受規(guī)律支配,但相空間中軌道運動不會中止,在有限空間中永遠運動著,不相交也不閉合。渾沌運動表觀上是無序的,產(chǎn)生了類隨機性,也稱內(nèi)在隨機性。渾沌模型一定程度上更新了傳統(tǒng)科學(xué)中的周期模型,用渾沌的觀點去看原來被視為周期運動的對象,往往有新的理解。80年代中期開始渾沌理論已被用于社會問題研究,如經(jīng)濟學(xué)、社會學(xué)和哲學(xué)研究。
大自然并不缺少混沌,現(xiàn)代科學(xué)重新發(fā)現(xiàn)了混沌。以渾沌理論為標(biāo)志的非線性科學(xué)強調(diào)自然的自組織機制,強調(diào)看待事物的整體性原則,與古代哲人所說的“前現(xiàn)在渾沌”有千絲萬縷的聯(lián)系,因而常常被后現(xiàn)代主義者看好。
探求渾沌的科學(xué)定義,追索渾沌古義,被認(rèn)為是渾沌語義學(xué)、非線性科學(xué)史、后現(xiàn)代主義科學(xué)觀研究等必須認(rèn)真對待的一門學(xué)問。
古人面對浩渺陌生的宇宙萬物與今人面對錯綜復(fù)雜的宏觀現(xiàn)象,情景大概是一樣的。在古代,為捕捉外部世界,幾乎所有民族都構(gòu)造了自己的渾沌自然哲學(xué);今天,為理解宏觀復(fù)雜性,世界各國的科學(xué)家并肩奮戰(zhàn),創(chuàng)立了具有革命性的渾沌新科學(xué)。這門新科學(xué)展示了一幅恢弘的科學(xué)世界圖景,也暗示了一種新的自然哲學(xué)。
從更大的范圍看,渾沌研究只是復(fù)雜性科學(xué)中的一支,新的自然哲學(xué)必然建立在整個復(fù)雜性科學(xué)的基礎(chǔ)之上。現(xiàn)在就匆忙從整體上進行全面的概括,為時尚早。
總結(jié)
- 上一篇: 分形(Fractal)
- 下一篇: 个人常用word技巧----平时编辑wo