BZOJ 3894 Luogu P4313 文理分科 (最小割)
題目鏈接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=3894
(luogu) https://www.luogu.org/problemnew/show/P4313
題解:
做法很簡單,就是最小割,\(S\)集屬于文科,\(T\)集屬于理科,對于每個點\(i\), 起點\(S\)向\(i\)連\(a_i\)(文科收益/理科代價),\(i\)向終點\(T\)連\(b_i\) (理科收益/文科代價),對于每一個點\(i\)再新建兩點\(i_a\)(同文點)和\(i_b\)(同理點),\(S\)向\(i_a\)連邊\(aa_i\)(同文收益),\(i_b\)向\(T\)連\(bb_i\)(同理收益),中間對于\(i\)和\(i\)座位相連的每個點,從\(i_a\)向該點連邊,從該點向\(i_b\)連邊,邊權均為\(+\inf\).
我的錯誤做法: 如果同文同理建成同一個點,和座位相連的每個點連雙向邊,那么這是錯的,如果連單向邊也是錯的。因為建兩個點實際上可以保證如果\(i_a\)屬于\(S\)集則它連向的人都選文,如果\(i_b\)屬于\(T\)集則連向它的人都選理,如果它們與\(S,T\)之間的邊都被割掉了,則它們對這些人沒有任何限制,這些人仍是獨立的。但如果同文同理建成同一個點連雙向邊,那么這些點之間構成強連通分量,相當于默認所有人必須在同一集合,這是最離譜的做法我居然能想出來。如果連單向邊呢,比如從新點往這幾個人連邊,從\(S\)往新點連邊,從新點往\(T\)連邊,那么相當于規定“如果新點屬于\(S\)則這些人全屬于\(S\), 如果新點屬于\(T\)則對這些人沒有要求”。總之,從\(i\)往\(j\)連邊\(\inf\)則相當于如果\(i\in S\)則\(j\in S\), 但是如果\(i\in T\)則對\(j\)沒有要求;如果\(j\in T\)則\(i\in T\),而如果\(j\in S\)則沒有要求對\(i\)沒有要求(這兩句話是等價的)。\(i\)和\(j\)之間連雙向\(\inf\)邊則相當于強制兩點在同一集合中。
代碼
#include<cstdio> #include<cstdlib> #include<cstring> #include<algorithm> #include<cassert> using namespace std;const int INF = 1e8;namespace MaxFlow {const int N = 3e4+2;const int M = 14e4;struct Edge{int v,w,nxt,rev;} e[(M<<1)+3];int fe[N+3];int te[N+3];int que[N+3];int dep[N+3];int n,en,s,t;void addedge(int u,int v,int w){en++; e[en].v = v; e[en].w = w;e[en].nxt = fe[u]; fe[u] = en; e[en].rev = en+1;en++; e[en].v = u; e[en].w = 0;e[en].nxt = fe[v]; fe[v] = en; e[en].rev = en-1;}bool bfs(){for(int i=1; i<=n; i++) dep[i] = 0;int head = 1,tail = 1; que[tail] = s; dep[s] = 1;while(head<=tail){int u = que[head]; head++;for(int i=fe[u]; i; i=e[i].nxt){if(dep[e[i].v]==0 && e[i].w>0){dep[e[i].v] = dep[u]+1;tail++; que[tail] = e[i].v;}}}return dep[t]!=0; }int dfs(int u,int cur){if(u==t) {return cur;}int rst = cur;for(int i=te[u]; i; i=e[i].nxt){if(dep[e[i].v]==dep[u]+1 && e[i].w>0 && rst>0){int flow = dfs(e[i].v,min(rst,e[i].w));if(flow>0){rst -= flow; e[i].w -= flow; e[e[i].rev].w += flow;if(e[i].w>0) {te[u] = i;}if(rst==0) return cur;}}}if(cur==rst) dep[u] = 0;return cur-rst;}int dinic(int _n,int _s,int _t){int ret = 0;n = _n,s = _s,t = _t;while(bfs()){for(int i=1; i<=n; i++) te[i] = fe[i];ret += dfs(s,INF);}return ret;} } using MaxFlow::addedge; using MaxFlow::dinic;const int N = 100; int a[N+3][N+3],b[N+3][N+3],aa[N+3][N+3],bb[N+3][N+3]; int n,m;int getid(int x,int y) {return (x-1)*m+y+2;}int main() {scanf("%d%d",&n,&m); int ans = 0;for(int i=1; i<=n; i++){for(int j=1; j<=m; j++){scanf("%d",&a[i][j]); ans += a[i][j];}}for(int i=1; i<=n; i++){for(int j=1; j<=m; j++){scanf("%d",&b[i][j]); ans += b[i][j];}}for(int i=1; i<=n; i++){for(int j=1; j<=m; j++){scanf("%d",&aa[i][j]); ans += aa[i][j];}}for(int i=1; i<=n; i++){for(int j=1; j<=m; j++){scanf("%d",&bb[i][j]); ans += bb[i][j];}}for(int i=1; i<=n; i++){for(int j=1; j<=m; j++){int x = getid(i,j);addedge(1,x,a[i][j]);addedge(x,2,b[i][j]);addedge(1,x+n*m,aa[i][j]);addedge(x+n*m*2,2,bb[i][j]);addedge(x+n*m,x,INF);addedge(x,x+n*m*2,INF);if(i>1){addedge(x+n*m,getid(i-1,j),INF);addedge(getid(i-1,j),x+n*m*2,INF);}if(j>1){addedge(x+n*m,getid(i,j-1),INF);addedge(getid(i,j-1),x+n*m*2,INF);}if(i<n){addedge(x+n*m,getid(i+1,j),INF);addedge(getid(i+1,j),x+n*m*2,INF);}if(j<m){addedge(x+n*m,getid(i,j+1),INF);addedge(getid(i,j+1),x+n*m*2,INF);}}}int tmp = dinic(n*m*3+2,1,2);ans -= tmp;printf("%d\n",ans);return 0; }總結
以上是生活随笔為你收集整理的BZOJ 3894 Luogu P4313 文理分科 (最小割)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: BZOJ 1834 Luogu P260
- 下一篇: BZOJ 2127 happiness