【Python】图解Pandas重复值处理
公眾號(hào):尤而小屋
作者:Peter
編輯:Peter
今天帶來(lái)的文章是關(guān)于Pandas中重復(fù)值處理。Pandas中處理重復(fù)值主要使用的是兩個(gè)函數(shù):
duplicated():判斷是否有重復(fù)值
drop_duplicates() :刪除重復(fù)值
一、模擬數(shù)據(jù)
在本文中模擬了兩份不同的數(shù)據(jù):
1、一份訂單數(shù)據(jù),后面會(huì)使用
import?pandas?as?pd import?numpy?as?np#?導(dǎo)入一份模擬數(shù)據(jù):待用df1?=?pd.read_excel("訂單重復(fù)值.xlsx") df12、模擬的另一份數(shù)據(jù):
df2?=?pd.DataFrame(np.ones([10,2]),??#?生成6*2的全部為1的數(shù)據(jù)columns=["col1","col2"]) df2再增加了兩個(gè)字段:都是從列表中隨機(jī)有抽樣放回的選取
#?增加兩列 list1?=?["a","b"] list2?=?[2,3]#?在列表中隨機(jī)選擇10個(gè)元素,有放回抽樣 df2["col3"]?=?np.random.choice(list1,10)?? df2["col4"]?=?np.random.choice(list2,10)df2二、判斷重復(fù)值-duplicated()
函數(shù)的功能是檢查數(shù)據(jù)中是否有重復(fù)值,用于標(biāo)記 Series 中的值、DataFrame 中的記錄行是否重復(fù),重復(fù)為 True,不重復(fù)為 False。
每行數(shù)據(jù)都是和它前面的記錄相比較。
2.1語(yǔ)法
針對(duì)DataFrame類(lèi)型數(shù)據(jù):
pandas.DataFrame.duplicated(subset=None,keep='first')或者針對(duì)Series的數(shù)據(jù):
pandas.Series.duplicated(keep='first')keep參數(shù)的3種取值解釋:
first:將重復(fù)項(xiàng)標(biāo)記True為第一次出現(xiàn)的除外
last:將重復(fù)項(xiàng)標(biāo)記True為最后一次除外
False:將所有重復(fù)項(xiàng)標(biāo)記為T(mén)rue
2.2基本使用
通過(guò)這個(gè)函數(shù)能夠判斷哪些數(shù)據(jù)是重復(fù)的:重復(fù)標(biāo)記為T(mén)rue,否則為False
2.3參數(shù)subset
df2.duplicated(subset=["col3"])??#?單獨(dú)看col3列是否重復(fù)#?結(jié)果 0????False 1?????True 2????False 3?????True 4?????True 5?????True 6?????True 7?????True 8?????True 9?????True dtype:?booldf2.duplicated(subset=["col1"])??#?單獨(dú)看col1:全部是1,后面全部是重復(fù)的 0????False 1?????True 2?????True 3?????True 4?????True 5?????True 6?????True 7?????True 8?????True 9?????True dtype:?bool上面的兩個(gè)例子都是看單個(gè)字段是否重復(fù),下面的例子是通過(guò)查看多個(gè)屬性:
df2.duplicated(subset=["col3","col4"])??#?同時(shí)看col3和col40????False 1?????True 2????False 3?????True 4?????True 5?????True 6?????True 7????False 8????False 9?????True dtype:?bool2.4參數(shù)keep
df2.duplicated(subset=["col3"],keep="last")?0?????True 1?????True 2?????True 3?????True 4?????True 5?????True 6?????True 7????False???#?第一次出現(xiàn) 8?????True 9????False???#?第一次出現(xiàn) dtype:?bool上面的keep參數(shù)使用的是last,相當(dāng)于是最后的一條數(shù)據(jù)是初始值,前面的值和它進(jìn)行比較,是否有重復(fù)值
下面的案例中keep使用的first(默認(rèn)),相當(dāng)于是將第一次出現(xiàn)的數(shù)據(jù)看做是初始值,后面的數(shù)據(jù)和它相比;如果重復(fù)標(biāo)記為T(mén)rue
三、drop_duplicates()
該函數(shù)的作用是刪除數(shù)據(jù)中的重復(fù)值
3.1語(yǔ)法形式
subset:表示按照指定的一個(gè)或者多個(gè)列屬性來(lái)刪除重復(fù)值,可選性;默認(rèn)是全部列屬性
keep:表示刪除重復(fù)值后保留的數(shù)據(jù),默認(rèn)是保留第一條數(shù)據(jù)
inplace:表示刪除重復(fù)是生成副本,還是直接在原數(shù)據(jù)上進(jìn)行修改。這個(gè)參數(shù)的功能在pandas的功能都是如此
ingoore_index:生成數(shù)據(jù)的索引是元數(shù)據(jù)的,還是從0,1,2...到n-1的自然數(shù)排列
下面是來(lái)自官網(wǎng)的參數(shù)解釋:
3.2全部使用默認(rèn)參數(shù)
上面的結(jié)果有兩個(gè)特點(diǎn):
索引還是原數(shù)據(jù)的索引
保留的數(shù)據(jù)是每條值的第一條(如果存在重復(fù)值)
判斷是否重復(fù),使用的是全部列屬性
上面的數(shù)據(jù)就是下面判斷是否重復(fù)的為False的數(shù)據(jù)(對(duì)比序號(hào))
3.3參數(shù)subset
subset是可以指定我們想通過(guò)哪些屬性來(lái)進(jìn)行刪除:
1、通過(guò)單個(gè)屬性字段來(lái)刪除
2、通過(guò)多個(gè)字段屬性來(lái)刪除
3.4參數(shù)keep
keep參數(shù)保留我們想要的數(shù)據(jù):第一條還是最后一條
1、keep="first"
image-202107121300384452、keep="last"
通過(guò)duplicated()查看數(shù)據(jù)是否重復(fù),可以看多索引為7和9的數(shù)據(jù)為False,因?yàn)樗鼈兪亲詈笠淮纬霈F(xiàn)
3.5參數(shù)ignore_index
該參數(shù)表示的是生成數(shù)據(jù)的索引是原數(shù)據(jù)的索引還是直接重新排名
3.6參數(shù)inplace
如果是使用默認(rèn)值False:
如果inplace使用True,不會(huì)生成數(shù)據(jù),因?yàn)槭窃谠瓟?shù)據(jù)的基礎(chǔ)上修改的,導(dǎo)致原數(shù)據(jù)直接變化了:我們直接看df2
四、實(shí)戰(zhàn)案例
在文章的最開(kāi)始,我們已經(jīng)導(dǎo)入了數(shù)據(jù),幾點(diǎn)需求說(shuō)明:
每個(gè)訂單可能存在多個(gè)狀態(tài),也可能只存在一個(gè)
我們想要找出最終的訂單狀態(tài)為“通過(guò)”的訂單的所有數(shù)據(jù)
比如訂單S1,存在3條狀態(tài),有兩條是通過(guò)的,但是我們只想取出最近的一條通過(guò)的數(shù)據(jù):2021-01-06
解決步驟1:先找出通過(guò)的全部訂單,發(fā)現(xiàn)只有S7沒(méi)有通過(guò)
通過(guò)下面的代碼也能夠找出最終是通過(guò)的訂單:
order_pass?=?df1.query("狀態(tài)?==?'通過(guò)'")["訂單號(hào)"].unique() order_pass解決步驟2:篩選出最終狀態(tài)為通過(guò)的訂單信息,下面提供了兩種方式
解決步驟3:對(duì)df3進(jìn)行去重即可
df3.drop_duplicates(subset="訂單號(hào)",??#?根據(jù)訂單號(hào)去重keep="last",??#?保留最后一條inplace=True,??#?原地修改ignore_index=True??#?索引重排 )df3??#?結(jié)果中沒(méi)有S7五、Pandas連載文章
Pandas的文章已經(jīng)形成連載,歡迎關(guān)注閱讀:
往期精彩回顧適合初學(xué)者入門(mén)人工智能的路線及資料下載機(jī)器學(xué)習(xí)及深度學(xué)習(xí)筆記等資料打印機(jī)器學(xué)習(xí)在線手冊(cè)深度學(xué)習(xí)筆記專(zhuān)輯《統(tǒng)計(jì)學(xué)習(xí)方法》的代碼復(fù)現(xiàn)專(zhuān)輯 AI基礎(chǔ)下載機(jī)器學(xué)習(xí)的數(shù)學(xué)基礎(chǔ)專(zhuān)輯黃海廣老師《機(jī)器學(xué)習(xí)課程》課件合集 本站qq群851320808,加入微信群請(qǐng)掃碼:總結(jié)
以上是生活随笔為你收集整理的【Python】图解Pandas重复值处理的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: Android平台屏幕/摄像头或外部数据
- 下一篇: 妙用世界之窗浏览器的隐私保护功能