【Python】怎么用matplotlib画出漂亮的分析图表
特征錦囊:怎么用matplotlib畫出漂亮的分析圖表
???? Index
數(shù)據(jù)集引入
折線圖
餅圖
散點圖
面積圖
直方圖
條形圖
關(guān)于用matplotlib畫圖,先前的錦囊里有提及到,不過那些圖都是比較簡陋的(《特征錦囊:常用的統(tǒng)計圖在Python里怎么畫?》),難登大雅之堂,作為一名優(yōu)秀的分析師,還是得學(xué)會一些讓圖表漂亮的技巧,這樣子拿出去才更加有面子哈哈。好了,今天的錦囊就是介紹一下各種常見的圖表,可以怎么來畫吧。
???? 數(shù)據(jù)集引入
首先引入數(shù)據(jù)集,我們還用一樣的數(shù)據(jù)集吧,分別是 Salary_Ranges_by_Job_Classification以及 GlobalLandTemperaturesByCity。(具體數(shù)據(jù)集可以后臺回復(fù) plot獲取)
#?導(dǎo)入一些常用包 import?pandas?as?pd import?numpy?as?np import?seaborn?as?sns%matplotlib?inline import?matplotlib.pyplot?as?plt import?matplotlib?as?mpl plt.style.use('fivethirtyeight')#解決中文顯示問題,Mac from?matplotlib.font_manager?import?FontProperties#?查看本機plt的有效style print(plt.style.available) #?根據(jù)本機available的style,選擇其中一個,因為之前知道ggplot很好看,所以我選擇了它 mpl.style.use(['ggplot'])#?['_classic_test',?'bmh',?'classic',?'dark_background',?'fast',?'fivethirtyeight',?'ggplot',?'grayscale',?'seaborn-bright',?'seaborn-colorblind',?'seaborn-dark-palette',?'seaborn-dark',?'seaborn-darkgrid',?'seaborn-deep',?'seaborn-muted',?'seaborn-notebook',?'seaborn-paper',?'seaborn-pastel',?'seaborn-poster',?'seaborn-talk',?'seaborn-ticks',?'seaborn-white',?'seaborn-whitegrid',?'seaborn',?'Solarize_Light2']#?數(shù)據(jù)集導(dǎo)入#?引入第?1?個數(shù)據(jù)集?Salary_Ranges_by_Job_Classification salary_ranges?=?pd.read_csv('./data/Salary_Ranges_by_Job_Classification.csv')#?引入第?2?個數(shù)據(jù)集?GlobalLandTemperaturesByCity climate?=?pd.read_csv('./data/GlobalLandTemperaturesByCity.csv') #?移除缺失值 climate.dropna(axis=0,?inplace=True) #?只看中國 #?日期轉(zhuǎn)換,?將dt?轉(zhuǎn)換為日期,取年份,?注意map的用法 climate['dt']?=?pd.to_datetime(climate['dt']) climate['year']?=?climate['dt'].map(lambda?value:?value.year) climate_sub_china?=?climate.loc[climate['Country']?==?'China'] climate_sub_china['Century']?=?climate_sub_china['year'].map(lambda?x:int(x/100?+1)) climate.head()???? 折線圖
折線圖是比較簡單的圖表了,也沒有什么好優(yōu)化的,顏色看起來順眼就好了。下面是從網(wǎng)上找到了顏色表,可以從中挑選~
#?選擇上海部分天氣數(shù)據(jù) df1?=?climate.loc[(climate['Country']=='China')&(climate['City']=='Shanghai')&(climate['dt']>='2010-01-01')]\.loc[:,['dt','AverageTemperature']]\.set_index('dt') df1.head()#?折線圖 df1.plot(colors=['lime']) plt.title('AverageTemperature?Of?ShangHai') plt.ylabel('Number?of?immigrants') plt.xlabel('Years') plt.show()上面這是單條折線圖,多條折線圖也是可以畫的,只需要多增加幾列。
#?多條折線圖 df1?=?climate.loc[(climate['Country']=='China')&(climate['City']=='Shanghai')&(climate['dt']>='2010-01-01')]\.loc[:,['dt','AverageTemperature']]\.rename(columns={'AverageTemperature':'SH'}) df2?=?climate.loc[(climate['Country']=='China')&(climate['City']=='Tianjin')&(climate['dt']>='2010-01-01')]\.loc[:,['dt','AverageTemperature']]\.rename(columns={'AverageTemperature':'TJ'}) df3?=?climate.loc[(climate['Country']=='China')&(climate['City']=='Shenyang')&(climate['dt']>='2010-01-01')]\.loc[:,['dt','AverageTemperature']]\.rename(columns={'AverageTemperature':'SY'}) #?合并 df123?=?df1.merge(df2,?how='inner',?on=['dt'])\.merge(df3,?how='inner',?on=['dt'])\.set_index(['dt']) df123.head()#?多條折線圖 df123.plot() plt.title('AverageTemperature?Of?3?City') plt.ylabel('Number?of?immigrants') plt.xlabel('Years') plt.show()???? 餅圖
接下來是畫餅圖,我們可以優(yōu)化的點多了一些,比如說從餅塊的分離程度,我們先畫一個“低配版”的餅圖。
df1?=?salary_ranges.groupby('SetID',?axis=0).sum()#?“低配版”餅圖 df1['Step'].plot(kind='pie',?figsize=(7,7),autopct='%1.1f%%',shadow=True) plt.axis('equal') plt.show()#?“高配版”餅圖 colors?=?['lightgreen',?'lightblue']?#控制餅圖顏色?['lightgreen',?'lightblue',?'pink',?'purple',?'grey',?'gold'] explode=[0,?0.2]?#控制餅圖分離狀態(tài),越大越分離df1['Step'].plot(kind='pie',?figsize=(7,?7),autopct?=?'%1.1f%%',?startangle=90,shadow=True,?labels=None,?pctdistance=1.12,?colors=colors,?explode?=?explode) plt.axis('equal') plt.legend(labels=df1.index,?loc='upper?right',?fontsize=14) plt.show()???? 散點圖
散點圖可以優(yōu)化的地方比較少了,ggplot2的配色都蠻好看的,正所謂style選的好,省很多功夫!
#?選擇上海部分天氣數(shù)據(jù) df1?=?climate.loc[(climate['Country']=='China')&(climate['City']=='Shanghai')&(climate['dt']>='2010-01-01')]\.loc[:,['dt','AverageTemperature']]\.rename(columns={'AverageTemperature':'SH'})df2?=?climate.loc[(climate['Country']=='China')&(climate['City']=='Shenyang')&(climate['dt']>='2010-01-01')]\.loc[:,['dt','AverageTemperature']]\.rename(columns={'AverageTemperature':'SY'}) #?合并 df12?=?df1.merge(df2,?how='inner',?on=['dt']) df12.head()#?散點圖 df12.plot(kind='scatter',??x='SH',?y='SY',?figsize=(10,?6),?color='darkred') plt.title('Average?Temperature?Between?ShangHai?-?ShenYang') plt.xlabel('ShangHai') plt.ylabel('ShenYang') plt.show()???? 面積圖
#?多條折線圖 df1?=?climate.loc[(climate['Country']=='China')&(climate['City']=='Shanghai')&(climate['dt']>='2010-01-01')]\.loc[:,['dt','AverageTemperature']]\.rename(columns={'AverageTemperature':'SH'}) df2?=?climate.loc[(climate['Country']=='China')&(climate['City']=='Tianjin')&(climate['dt']>='2010-01-01')]\.loc[:,['dt','AverageTemperature']]\.rename(columns={'AverageTemperature':'TJ'}) df3?=?climate.loc[(climate['Country']=='China')&(climate['City']=='Shenyang')&(climate['dt']>='2010-01-01')]\.loc[:,['dt','AverageTemperature']]\.rename(columns={'AverageTemperature':'SY'}) #?合并 df123?=?df1.merge(df2,?how='inner',?on=['dt'])\.merge(df3,?how='inner',?on=['dt'])\.set_index(['dt']) df123.head()colors?=?['red',?'pink',?'blue']?#控制餅圖顏色?['lightgreen',?'lightblue',?'pink',?'purple',?'grey',?'gold'] df123.plot(kind='area',?stacked=False,figsize=(20,?10),?colors=colors) plt.title('AverageTemperature?Of?3?City') plt.ylabel('AverageTemperature') plt.xlabel('Years') plt.show()???? 直方圖
#?選擇上海部分天氣數(shù)據(jù) df?=?climate.loc[(climate['Country']=='China')&(climate['City']=='Shanghai')&(climate['dt']>='2010-01-01')]\.loc[:,['dt','AverageTemperature']]\.set_index('dt') df.head()#?最簡單的直方圖 df['AverageTemperature'].plot(kind='hist',?figsize=(8,5),?colors=['grey']) plt.title('ShangHai?AverageTemperature?Of?2010-2013')?#?add?a?title?to?the?histogram plt.ylabel('Number?of?month')?#?add?y-label plt.xlabel('AverageTemperature')?#?add?x-label plt.show()???? 條形圖
#?選擇上海部分天氣數(shù)據(jù) df?=?climate.loc[(climate['Country']=='China')&(climate['City']=='Shanghai')&(climate['dt']>='2010-01-01')]\.loc[:,['dt','AverageTemperature']]\.set_index('dt') df.head()df.plot(kind='bar',?figsize?=?(10,?6)) plt.xlabel('Month')? plt.ylabel('AverageTemperature')? plt.title('AverageTemperature?of?shanghai') plt.show()df.plot(kind='barh',?figsize=(12,?16),?color='steelblue') plt.xlabel('AverageTemperature')? plt.ylabel('Month')? plt.title('AverageTemperature?of?shanghai')? plt.show()今天的內(nèi)容比較長了,建議收藏起來哦,下次有空的時候可以把它弄進(jìn)自己的代碼庫,使用起來更加方便哦~
往期精彩回顧適合初學(xué)者入門人工智能的路線及資料下載機器學(xué)習(xí)及深度學(xué)習(xí)筆記等資料打印機器學(xué)習(xí)在線手冊深度學(xué)習(xí)筆記專輯《統(tǒng)計學(xué)習(xí)方法》的代碼復(fù)現(xiàn)專輯 AI基礎(chǔ)下載機器學(xué)習(xí)的數(shù)學(xué)基礎(chǔ)專輯 獲取本站知識星球優(yōu)惠券,復(fù)制鏈接直接打開: https://t.zsxq.com/qFiUFMV 本站qq群704220115。加入微信群請掃碼:總結(jié)
以上是生活随笔為你收集整理的【Python】怎么用matplotlib画出漂亮的分析图表的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 腾讯视频下载下来的视频在哪里
- 下一篇: Win11开始菜单没反应怎么办 Win1