python图像数独_Python图像识别+KNN求解数独的实现
Python-opencv+KNN求解數獨
最近一直在玩數獨,突發奇想實現圖像識別求解數獨,輸入到輸出平均需要0.5s。
整體思路大概就是識別出圖中數字生成list,然后求解。
輸入輸出demo
數獨采用的是微軟自帶的Microsoft sudoku軟件隨便截取的圖像,如下圖所示:
經過程序求解后,得到的結果如下圖所示:
程序具體流程
程序整體流程如下圖所示:
讀入圖像后,根據求解輪廓信息找到數字所在位置,以及不包含數字的空白位置,提取數字信息通過KNN識別,識別出數字;無數字信息的在list中置0;生成未求解數獨list,之后求解數獨,將信息在原圖中顯示出來。
# -*-coding:utf-8-*-
import os
import cv2 as cv
import numpy as np
import time
####################################################
#尋找數字生成list
def find_dig_(img, train_set):
if img is None:
print("無效的圖片!")
os._exit(0)
return
_, thre = cv.threshold(img, 230, 250, cv.THRESH_BINARY_INV)
_, contours, hierarchy = cv.findContours(thre, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
sudoku_list = []
boxes = []
for i in range(len(hierarchy[0])):
if hierarchy[0][i][3] == 0: # 表示父輪廓為 0
boxes.append(hierarchy[0][i])
# 提取數字
nm = []
for j in range(len(boxes)): # 此處len(boxes)=81
if boxes[j][2] != -1:
x, y, w, h = cv.boundingRect(contours[boxes[j][2]])
nm.append([x, y, w, h])
# 在原圖中框選各個數字
cropped = img[y:y + h, x:x + w]
im = img_pre(cropped)#預處理
AF = incise(im)#切割數字圖像
result = identification(train_set, AF, 7)#knn識別
sudoku_list.insert(0, int(result))#生成list
else:
sudoku_list.insert(0, 0)
if len(sudoku_list) == 81:
sudoku_list= np.array(sudoku_list)
sudoku_list= sudoku_list.reshape((9, 9))
print("old_sudoku -> \n", sudoku_list)
return sudoku_list, contours, hierarchy
else:
print("無效的圖片!")
os._exit(0)
######################################################
#KNN算法識別數字
def img_pre(cropped):
# 預處理數字圖像
im = np.array(cropped) # 轉化為二維數組
for i in range(im.shape[0]): # 轉化為二值矩陣
for j in range(im.shape[1]):
# print(im[i, j])
if im[i, j] != 255:
im[i, j] = 1
else:
im[i, j] = 0
return im
# 提取圖片特征
def feature(A):
midx = int(A.shape[1] / 2) + 1
midy = int(A.shape[0] / 2) + 1
A1 = A[0:midy, 0:midx].mean()
A2 = A[midy:A.shape[0], 0:midx].mean()
A3 = A[0:midy, midx:A.shape[1]].mean()
A4 = A[midy:A.shape[0], midx:A.shape[1]].mean()
A5 = A.mean()
AF = [A1, A2, A3, A4, A5]
return AF
# 切割圖片并返回每個子圖片特征
def incise(im):
# 豎直切割并返回切割的坐標
a = [];
b = []
if any(im[:, 0] == 1):
a.append(0)
for i in range(im.shape[1] - 1):
if all(im[:, i] == 0) and any(im[:, i + 1] == 1):
a.append(i + 1)
elif any(im[:, i] == 1) and all(im[:, i + 1] == 0):
b.append(i + 1)
if any(im[:, im.shape[1] - 1] == 1):
b.append(im.shape[1])
# 水平切割并返回分割圖片特征
names = locals();
AF = []
for i in range(len(a)):
names['na%s' % i] = im[:, range(a[i], b[i])]
if any(names['na%s' % i][0, :] == 1):
c = 0
else:
for j in range(names['na%s' % i].shape[0]):
if j < names['na%s' % i].shape[0] - 1:
if all(names['na%s' % i][j, :] == 0) and any(names['na%s' % i][j + 1, :] == 1):
c = j
break
else:
c = j
if any(names['na%s' % i][names['na%s' % i].shape[0] - 1, :] == 1):
d = names['na%s' % i].shape[0] - 1
else:
for j in range(names['na%s' % i].shape[0]):
if j < names['na%s' % i].shape[0] - 1:
if any(names['na%s' % i][j, :] == 1) and all(names['na%s' % i][j + 1, :] == 0):
d = j + 1
break
else:
d = j
names['na%s' % i] = names['na%s' % i][range(c, d), :]
AF.append(feature(names['na%s' % i])) # 提取特征
for j in names['na%s' % i]:
pass
return AF
# 訓練已知圖片的特征
def training():
train_set = {}
for i in range(9):
value = []
for j in range(15):
ima = cv.imread('E:/test_image/knn_test/{}/{}.png'.format(i + 1, j + 1), 0)
im = img_pre(ima)
AF = incise(im)
value.append(AF[0])
train_set[i + 1] = value
return train_set
# 計算兩向量的距離
def distance(v1, v2):
vector1 = np.array(v1)
vector2 = np.array(v2)
Vector = (vector1 - vector2) ** 2
distance = Vector.sum() ** 0.5
return distance
# 用最近鄰算法識別單個數字
def knn(train_set, V, k):
key_sort = [11] * k
value_sort = [11] * k
for key in range(1, 10):
for value in train_set[key]:
d = distance(V, value)
for i in range(k):
if d < value_sort[i]:
for j in range(k - 2, i - 1, -1):
key_sort[j + 1] = key_sort[j]
value_sort[j + 1] = value_sort[j]
key_sort[i] = key
value_sort[i] = d
break
max_key_count = -1
key_set = set(key_sort)
for key in key_set:
if max_key_count < key_sort.count(key):
max_key_count = key_sort.count(key)
max_key = key
return max_key
# 生成數字
def identification(train_set, AF, k):
result = ''
for i in AF:
key = knn(train_set, i, k)
result = result + str(key)
return result
######################################################
######################################################
#求解數獨
def get_next(m, x, y):
# 獲得下一個空白格在數獨中的坐標。
:param m 數獨矩陣
:param x 空白格行數
:param y 空白格列數
"""
for next_y in range(y + 1, 9): # 下一個空白格和當前格在一行的情況
if m[x][next_y] == 0:
return x, next_y
for next_x in range(x + 1, 9): # 下一個空白格和當前格不在一行的情況
for next_y in range(0, 9):
if m[next_x][next_y] == 0:
return next_x, next_y
return -1, -1 # 若不存在下一個空白格,則返回 -1,-1
def value(m, x, y):
# 返回符合"每個橫排和豎排以及九宮格內無相同數字"這個條件的有效值。
i, j = x // 3, y // 3
grid = [m[i * 3 + r][j * 3 + c] for r in range(3) for c in range(3)]
v = set([x for x in range(1, 10)]) - set(grid) - set(m[x]) - \
set(list(zip(*m))[y])
return list(v)
def start_pos(m):
# 返回第一個空白格的位置坐標
for x in range(9):
for y in range(9):
if m[x][y] == 0:
return x, y
return False, False # 若數獨已完成,則返回 False, False
def try_sudoku(m, x, y):
# 試著填寫數獨
for v in value(m, x, y):
m[x][y] = v
next_x, next_y = get_next(m, x, y)
if next_y == -1: # 如果無下一個空白格
return True
else:
end = try_sudoku(m, next_x, next_y) # 遞歸
if end:
return True
m[x][y] = 0 # 在遞歸的過程中,如果數獨沒有解開,
# 則回溯到上一個空白格
def sudoku_so(m):
x, y = start_pos(m)
try_sudoku(m, x, y)
print("new_sudoku -> \n", m)
return m
###################################################
# 將結果繪制到原圖
def draw_answer(img, contours, hierarchy, new_sudoku_list ):
new_sudoku_list = new_sudoku_list .flatten().tolist()
for i in range(len(contours)):
cnt = contours[i]
if hierarchy[0, i, -1] == 0:
num = new_soduku_list.pop(-1)
if hierarchy[0, i, 2] == -1:
x, y, w, h = cv.boundingRect(cnt)
cv.putText(img, "%d" % num, (x + 19, y + 56), cv.FONT_HERSHEY_SIMPLEX, 1.8, (0, 0, 255), 2) # 填寫數字
cv.imwrite("E:/answer.png", img)
if __name__ == '__main__':
t1 = time.time()
train_set = training()
img = cv.imread('E:/test_image/python_test_img/Sudoku.png')
img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
sudoku_list, contours, hierarchy = find_dig_(img_gray, train_set)
new_sudoku_list = sudoku_so(sudoku_list)
draw_answer(img, contours, hierarchy, new_sudoku_list )
print("time :",time.time()-t1)
PS:
使用KNN算法需要創建訓練集,數獨中共涉及9個數字,“1,2,3,4,5,6,7,8,9”各15幅圖放入文件夾中,如下圖所示。
到此這篇關于Python圖像識別+KNN求解數獨的實現的文章就介紹到這了,更多相關Python KNN求解數獨內容請搜索WEB開發者以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持WEB開發者!
總結
以上是生活随笔為你收集整理的python图像数独_Python图像识别+KNN求解数独的实现的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 教资计算机科学与技术教资,教资笔试查成绩
- 下一篇: 编程c语言顺口溜,C语言运算符优先级顺口