基于Python的开源人脸识别库,离线识别率高达99.38%
生活随笔
收集整理的這篇文章主要介紹了
基于Python的开源人脸识别库,离线识别率高达99.38%
小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.
使用 dlib 頂尖的深度學習人臉識別技術構建,在戶外臉部檢測數(shù)據(jù)庫基準(Labeled Faces in the Wild benchmark)上的準確率高達 99.38%。
這也提供了一個簡單的 face_recognition 命令行工具,你可以打開命令行中任意圖像文件夾,進行人臉識別!
項目地址: https://github.com/ageitgey/face_recognition#face-recognition
演示地址:https://beta.deepnote.org/launch?template=face_recognition
?
讀取圖片
from PIL import Image, ImageDraw from IPython.display import display# The program we will be finding faces on the example below pil_im = Image.open('dd.png') display(pil_im)?訓練
import face_recognition import numpy as np from PIL import Image, ImageDraw from IPython.display import display# This is an example of running face recognition on a single image # and drawing a box around each person that was identified.# Load a sample picture and learn how to recognize it. obama_image = face_recognition.load_image_file("obama.jpg") obama_face_encoding = face_recognition.face_encodings(obama_image)[0]# Load a second sample picture and learn how to recognize it. biden_image = face_recognition.load_image_file("biden.jpg") biden_face_encoding = face_recognition.face_encodings(biden_image)[0]lyj_image = face_recognition.load_image_file("lyj.jpg") lyj_face_encoding = face_recognition.face_encodings(lyj_image)[0]# Create arrays of known face encodings and their names known_face_encodings = [obama_face_encoding,biden_face_encoding,lyj_face_encoding ] known_face_names = ["Barack Obama","Joe Biden","lyj" ] print('Learned encoding for', len(known_face_encodings), 'images.')?識別
# Load an image with an unknown face unknown_image = face_recognition.load_image_file("22.jpg")# Find all the faces and face encodings in the unknown image face_locations = face_recognition.face_locations(unknown_image) face_encodings = face_recognition.face_encodings(unknown_image, face_locations)# Convert the image to a PIL-format image so that we can draw on top of it with the Pillow library # See http://pillow.readthedocs.io/ for more about PIL/Pillow pil_image = Image.fromarray(unknown_image) # Create a Pillow ImageDraw Draw instance to draw with draw = ImageDraw.Draw(pil_image)# Loop through each face found in the unknown image for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):# See if the face is a match for the known face(s)matches = face_recognition.compare_faces(known_face_encodings, face_encoding)name = "Unknown"# Or instead, use the known face with the smallest distance to the new faceface_distances = face_recognition.face_distance(known_face_encodings, face_encoding)best_match_index = np.argmin(face_distances)if matches[best_match_index]:name = known_face_names[best_match_index]# Draw a box around the face using the Pillow moduledraw.rectangle(((left, top), (right, bottom)), outline=(0, 0, 255))# Draw a label with a name below the facetext_width, text_height = draw.textsize(name)draw.rectangle(((left, bottom - text_height - 10), (right, bottom)), fill=(0, 0, 255), outline=(0, 0, 255))draw.text((left + 6, bottom - text_height - 5), name, fill=(255, 255, 255, 255))# Remove the drawing library from memory as per the Pillow docs del draw# Display the resulting image display(pil_image)?
總結
以上是生活随笔為你收集整理的基于Python的开源人脸识别库,离线识别率高达99.38%的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: mysql6.10,MySQL经典50题
- 下一篇: linux 删除node进程,关于nod