线性代数向量乘法_标量乘法属性1 | 使用Python的线性代数
線性代數(shù)向量乘法
Prerequisite: Linear Algebra | Defining a Vector
先決條件: 線性代數(shù)| 定義向量
Linear algebra is the branch of mathematics concerning linear equations by using vector spaces and through matrices. In other words, a vector is a matrix in n-dimensional space with only one column. In a scalar product, each component of the vector is multiplied by the same scalar value. As a result, the vector's length is increased by a scalar value.
線性代數(shù)是使用向量空間和矩陣的線性方程組的數(shù)學(xué)分支。 換句話說,向量是n維空間中只有一列的矩陣。 在標(biāo)量積中,向量的每個分量都乘以相同的標(biāo)量值。 結(jié)果,向量的長度增加了一個標(biāo)量值。
For example: Let a vector a = [4, 9, 7], this is a 3-dimensional vector (x, y, and z)
例如:讓向量a = [4、9、7],這是3維向量(x,y和z)
So, a scalar product will be given as?b = c*a
因此,標(biāo)量積將給出為b = c * a
Where c is a constant scalar value (from the set of all real numbers R). The length vector b is c times the length of vector a. This scalar, multiplication follows a property shown below:
其中c是常數(shù)標(biāo)量值(來自所有實數(shù)R的集合)。 長度矢量b是向量a的長度c倍。 此標(biāo)量乘法遵循以下屬性:
Where A and B are two vectors. The python code aims to evaluate the right-hand side and left-hand side for proving the scalar property.
其中A和B是兩個向量。 python代碼旨在評估右側(cè)和左側(cè)以證明標(biāo)量屬性。
標(biāo)量乘法屬性的Python代碼 (Python code for Scalar Multiplication Property)
# Vectors in Linear Algebra Sequnce A = [3, 5, -5, 8] B = [7 , 7 , 7 , 7] print("Vector A = ", A) print("Vector B = ", B)C = int(input("Enter the value of scalar multiplier: "))# defining a function for scalar multiplication def scalar(C, a):b = []for i in range(len(a)):b.append(C*a[i])return b # defining a function for addition def add(a,b):c = []for i in range(len(a)):c.append(a[i]+b[i])return c# RHS ss = add(A,B) print("Vector C(A + B) = ", scalar(C,ss))# LHS An = scalar(C, A) Bn = scalar(C, B) print("Vector (CA + CB) = ", add(An,Bn))print('---Both are same and therefore,') print('the scalar property in vectors satisfies') print('this property---')Output
輸出量
Vector A = [3, 5, -5, 8] Vector B = [7, 7, 7, 7] Enter the value of scalar multiplier: 3 Vector C(A + B) = [30, 36, 6, 45] Vector (CA + CB) = [30, 36, 6, 45] ---Both are same and therefore, the scalar property in vectors satisfies this property---翻譯自: https://www.includehelp.com/python/scalar-multiplication-property-1.aspx
線性代數(shù)向量乘法
總結(jié)
以上是生活随笔為你收集整理的线性代数向量乘法_标量乘法属性1 | 使用Python的线性代数的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: PUC的完整形式是什么?
- 下一篇: 什么是WebSocket,以及如何在Py