【推荐】新冠肺炎的最新数据集和可视化和预测分析(附代码)
新冠肺炎現在情況怎么樣了?推薦Github標星24.7K+的新冠肺炎公開數據集,利用這個數據集,可以用代碼進行簡單地可視化及預測。
推薦新冠肺炎的公開數據集:
https://github.com/CSSEGISandData/COVID-19
數據可視化:
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
數據集能做什么?
這個數據集可以做以下分析:
全球趨勢
國家(地區)增長
省份情況
美國
歐洲
亞洲
什么時候會收斂?進行預測
簡單演示
新冠肺炎感染人數可視化效果
數據來源
數據來源:
World Health Organization (WHO): https://www.who.int/
DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia. ?
BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/ ?
National Health Commission of the People’s Republic of China (NHC):
http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtmlChina CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm
Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html
Macau Government: https://www.ssm.gov.mo/portal/
Taiwan CDC: https://sites.google.com/cdc.gov.tw/2019ncov/taiwan?authuser=0
US CDC: https://www.cdc.gov/coronavirus/2019-ncov/index.html
Government of Canada: https://www.canada.ca/en/public-health/services/diseases/coronavirus.html
Australia Government Department of Health: https://www.health.gov.au/news/coronavirus-update-at-a-glance
European Centre for Disease Prevention and Control (ECDC): https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases
Ministry of Health Singapore (MOH): https://www.moh.gov.sg/covid-19
Italy Ministry of Health: http://www.salute.gov.it/nuovocoronavirus
1Point3Arces: https://coronavirus.1point3acres.com/en
WorldoMeters: https://www.worldometers.info/coronavirus/
COVID Tracking Project: https://covidtracking.com/data. (US Testing and Hospitalization Data. We use the maximum reported value from "Currently" and "Cumulative" Hospitalized for our hospitalization number reported for each state.)
French Government: https://dashboard.covid19.data.gouv.fr/
COVID Live (Australia): https://www.covidlive.com.au/
Washington State Department of Health: https://www.doh.wa.gov/emergencies/coronavirus
Maryland Department of Health: https://coronavirus.maryland.gov/
New York State Department of Health: https://health.data.ny.gov/Health/New-York-State-Statewide-COVID-19-Testing/xdss-u53e/data
NYC Department of Health and Mental Hygiene: https://www1.nyc.gov/site/doh/covid/covid-19-data.page and https://github.com/nychealth/coronavirus-data
Florida Department of Health Dashboard: https://services1.arcgis.com/CY1LXxl9zlJeBuRZ/arcgis/rest/services/Florida_COVID19_Cases/FeatureServer/0 and https://fdoh.maps.arcgis.com/apps/opsdashboard/index.html#/8d0de33f260d444c852a615dc7837c86
總結
?本文推薦新冠肺炎的公開數據集,利用這個數據集,可以用代碼進行簡單地可視化及預測。
數據集地址:
https://github.com/CSSEGISandData/COVID-19
數據預測代碼:
https://www.kaggle.com/corochann/covid-19-current-situation-on-october?scriptVersionId=45297457
(數據請從數據集地址下載最新)
往期精彩回顧適合初學者入門人工智能的路線及資料下載機器學習及深度學習筆記等資料打印機器學習在線手冊深度學習筆記專輯《統計學習方法》的代碼復現專輯 AI基礎下載機器學習的數學基礎專輯 獲取本站知識星球優惠券,復制鏈接直接打開: https://t.zsxq.com/y7uvZF6 本站qq群704220115。加入微信群請掃碼:總結
以上是生活随笔為你收集整理的【推荐】新冠肺炎的最新数据集和可视化和预测分析(附代码)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 【机器学习基础】机器学习距离与相似度计算
- 下一篇: 【机器学习基础】优化算法详解