重磅!就在刚刚,吊打一切的 YOLOv4 开源了!
插個極市宣傳
2020極市計算機視覺開發者榜單已于7月20日開賽,8月31日截止提交,基于火焰識別、電動車頭盔識別、后廚老鼠識別、摔倒識別四個賽道,47000+數據集,30萬獎勵等你挑戰!點擊這里報名
Tips
◎作者系極市原創作者計劃特約作者Happy
歡迎大家聯系極市小編(微信ID:fengcall19)加入極市原創作者行列
原文鏈接:重磅!就在剛剛,吊打一切的 YOLOv4 開源了!
早上刷到YOLOv4之時,非常不敢相信這是真的!
paper:https://arxiv.org/pdf/2004.10934.pdf,
code:https://github.com/AlexeyAB/darknet
核心中的核心:作者將Weighted-Residual-Connections(WRC), Cross-Stage-Partial-connections(CSP), Cross mini-Batch Normalization(CmBN), Self-adversarial-training(SAT),Mish-activation Mosaic data augmentation, DropBlock, CIoU等組合得到了爆炸性的YOLOv4,可以吊打一切的YOLOv4.在MS-COCO數據上:43.5%@AP(65.7%@AP50)同時可以達到65fps@TeslaV100.
Contribution
作者設計YOLO的目的之初就是設計一個快速而高效的目標檢測器。該文的貢獻主要有以下幾點:
- 設計了一種快速而強有力的目標檢測器,它使得任何人僅需一個1080Ti或者2080Ti即可訓練這樣超快且精確的目標檢測器你;
- (不會翻譯直接上英文)We verify the influence of SOTA bag-of-freebies and bag-of-specials methods of object detection during detector training
- 作者對SOTA方法進行改進(含CBN、PAN,SAM)以使其更適合單GPU訓練
Method
作者在現有實時網絡的基礎上提出了兩種觀點:
- 對于GPU而言,在組卷積中采用小數量的groups(1-8),比如CSPResNeXt50/CSPDarknet53;
- 對于VPU而言,采用組卷積而不采用SE模塊。
網路結構選擇
網絡結構選擇是為了在輸入分辨率、網絡層數、參數量、輸出濾波器數之間尋求折中。作者研究表明:CSPResNeXt50在分類方面優于CSPDarkNet53,而在檢測方面反而表現要差。
網絡主要結構確定了后,下一個目標是選擇額外的模塊以提升感受野、更好的特征匯聚模塊(如FPN、PAN、ASFF、BiFPN)。對于分類而言最好的模型可能并不適合于檢測,相反,檢測模型需要具有以下特性:
- 更高的輸入分辨率,為了更好的檢測小目標;
- 更多的層,為了具有更大的感受野;
- 更多的參數,更大的模型可以同時檢測不同大小的目標。
一句話就是:選擇具有更大感受野、更大參數的模型作為backbone。下圖給出了不同backbone的上述信息對比。從中可以看到:CSPResNeXt50僅僅包含16個卷積層,其感受野為425x425,包含20.6M參數;而CSPDarkNet53包含29個卷積層,725x725的感受野,27.6M參數。這從理論與實驗角度表明:CSPDarkNet53更適合作為檢測模型的Backbone。
在CSPDarkNet53基礎上,作者添加了SPP模塊,因其可以提升模型的感受野、分離更重要的上下文信息、不會導致模型推理速度的下降;與此同時,作者還采用PANet中的不同backbone級的參數匯聚方法替代FPN。
最終的模型為:CSPDarkNet53+SPP+PANet(path-aggregation neck)+YOLOv3-head = YOLOv4.
Tricks選擇
為更好的訓練目標檢測模型,CNN模型通常具有以下模塊:
- Activations:ReLU、Leaky-ReLU、PReLU、ReLU6、SELU、Swish or Mish
- Bounding box regression Loss:MSE、IoU、GIoU、CIoU、DIoU
- Data Augmentation:CutOut、MixUp、CutMix
- Regularization:DropOut、DropPath、Spatial DropOut、DropBlock
- Normalization:BN、SyncBn、FRN、CBN
- Skip-connections: Residual connections, weighted residual connections, Cross stage partial connections
作者從上述模塊中選擇如下:激活函數方面選擇Mish;正則化方面選擇DropBlock;由于聚焦在單GPU,故而未考慮SyncBN。
其他改進策略
為使得所涉及的檢測器更適合于單GPU,作者還進行了其他幾項額外設計與改進:
- 引入一種新的數據增廣方法:Mosaic與自對抗訓練;
- 通過GA算法選擇最優超參數;
- 對現有方法進行改進以更適合高效訓練和推理:改進SAM、改進PAN,CmBN。
YOLOv4
總而言之,YOLOv4包含以下信息:
- Backbone:CSPDarkNet53
- Neck:SPP,PAN
- Head:YOLOv3
- Tricks(backbone):CutMix、Mosaic、DropBlock、Label Smoothing
- Modified(backbone): Mish、CSP、MiWRC
- Tricks(detector):CIoU、CMBN、DropBlock、Mosaic、SAT、Eliminate grid sensitivity、Multiple Anchor、Cosine Annealing scheduler、Random training shape
- Modified(tector):Mish、SPP、SAM、PAN、DIoU-NMS
Experiments
模型的好壞最終還是要通過實驗來驗證,直接上對比表:
更多的消融實驗分析如下:
各位小伙伴還是趕緊去研究一下原文吧~
關注極市平臺公眾號(ID:extrememart),獲取計算機視覺前沿資訊/技術干貨/招聘面經等
總結
以上是生活随笔為你收集整理的重磅!就在刚刚,吊打一切的 YOLOv4 开源了!的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 25篇最新CV领域综述性论文速递!涵盖1
- 下一篇: 谷歌又放大招:视觉效果完胜其他SOTA的