tensorflow 按维度相加_人工智能 TensorFlow 必知必会编程概念整理
內容概括:
- 學習 TensorFlow 編程模型的基礎知識,重點了解以下概念:
- 張量
- 指令
- 圖
- 會話
- 構建一個簡單的 TensorFlow 程序,使用該程序繪制一個默認圖并創建一個運行該圖的會話
概念概覽
TensorFlow 的名稱源自張量,張量是任意維度的數組。借助 TensorFlow,您可以操控具有大量維度的張量。即便如此,在大多數情況下,您會使用以下一個或多個低維張量:
- 標量是零維數組(零階張量)。例如,'Howdy' 或 5
- 矢量是一維數組(一階張量)。例如,[2, 3, 5, 7, 11] 或 [5]
- 矩陣是二維數組(二階張量)。例如,[[3.1, 8.2, 5.9][4.3, -2.7, 6.5]]
TensorFlow 指令會創建、銷毀和操控張量。典型 TensorFlow 程序中的大多數代碼行都是指令。
TensorFlow 圖(也稱為計算圖或數據流圖)是一種圖數據結構。很多 TensorFlow 程序由單個圖構成,但是 TensorFlow 程序可以選擇創建多個圖。圖的節點是指令;圖的邊是張量。張量流經圖,在每個節點由一個指令操控。一個指令的輸出張量通常會變成后續指令的輸入張量。TensorFlow 會實現延遲執行模型,意味著系統僅會根據相關節點的需求在需要時計算節點。
張量可以作為常量或變量存儲在圖中。您可能已經猜到,常量存儲的是值不會發生更改的張量,而變量存儲的是值會發生更改的張量。不過,您可能沒有猜到的是,常量和變量都只是圖中的一種指令。常量是始終會返回同一張量值的指令。變量是會返回分配給它的任何張量的指令。
要定義常量,請使用 tf.constant 指令,并傳入它的值。例如:
x = tf.constant([5.2])同樣,您可以創建如下變量:
y = tf.Variable([5])或者,您也可以先創建變量,然后再如下所示地分配一個值(注意:您始終需要指定一個默認值):
y = tf.Variable([0]) y = y.assign([5])定義一些常量或變量后,您可以將它們與其他指令(如 tf.add)結合使用。在評估 tf.add 指令時,它會調用您的 tf.constant 或 tf.Variable 指令,以獲取它們的值,然后返回一個包含這些值之和的新張量。
圖必須在 TensorFlow 會話中運行,會話存儲了它所運行的圖的狀態:
with tf.Session() as sess: initialization = tf.global_variables_initializer() print(y.eval())在使用 tf.Variable 時,您必須在會話開始時調用 tf.global_variables_initializer,以明確初始化這些變量,如上所示。
注意:會話可以將圖分發到多個機器上執行(假設程序在某個分布式計算框架上運行)。有關詳情,請參閱分布式 TensorFlow。
總結
TensorFlow 編程本質上是一個兩步流程:
創建一個簡單的 TensorFlow 程序
我們來看看如何編寫一個將兩個常量相加的簡單 TensorFlow 程序。
添加 import 語句
與幾乎所有 Python 程序一樣,您首先要添加一些 import 語句。 當然,運行 TensorFlow 程序所需的 import 語句組合取決于您的程序將要訪問的功能。至少,您必須在所有 TensorFlow 程序中添加 import tensorflow 語句:
import tensorflow as tf其他常見的 import 語句包括:
import matplotlib.pyplot as plt # 數據集可視化。import numpy as np # 低級數字 Python 庫。import pandas as pd # 較高級別的數字 Python 庫。TensorFlow 提供了一個默認圖。不過,我們建議您明確創建自己的 Graph,以便跟蹤狀態(例如,您可能希望在每個單元格中使用一個不同的 Graph)。
from __future__ import print_function?import tensorflow as tf?# Create a graph.g = tf.Graph()?# Establish the graph as the "default" graph.with g.as_default(): # Assemble a graph consisting of the following three operations: # * Two tf.constant operations to create the operands. # * One tf.add operation to add the two operands. x = tf.constant(8, name="x_const") y = tf.constant(5, name="y_const") sum = tf.add(x, y, name="x_y_sum")?? # Now create a session. # The session will run the default graph. with tf.Session() as sess: print(sum.eval())以上就是 tensorflow 必知必會的基礎知識了,試著修改運行該項目,開始探索 tensorflow 吧。
總結
以上是生活随笔為你收集整理的tensorflow 按维度相加_人工智能 TensorFlow 必知必会编程概念整理的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 判断两个list集合里的对象某个属性值是
- 下一篇: android double转strin